Zobrazeno 1 - 10
of 1 028
pro vyhledávání: '"LIFSHITS, M. A."'
Autor:
Lifshits, M. A., Nikitin, S. E.
We consider the energy saving approximation of a Wiener process under unilateral constraints. We show that, almost surely, on large time intervals the minimal energy necessary for the approximation logarithmically depends on the interval's length. We
Externí odkaz:
http://arxiv.org/abs/2306.13305
Autor:
Lifshits, M. A., Nikitin, S. E.
We study large deviation properties of Telecom processes appearing as limits in a critical regime of infinite source Poisson models.
Externí odkaz:
http://arxiv.org/abs/2107.11846
Autor:
Lifshits, M. B.1 (AUTHOR), Grabar, V. A.1 (AUTHOR), Averkiev, N. S.1 (AUTHOR) Averkiev@les.ioffe.ru
Publikováno v:
Semiconductors. Jan2024, Vol. 58 Issue 1, p46-52. 7p.
Autor:
Lifshits, M., Nazarov, A.
Publikováno v:
Statist.and Probab. Letters, 2019, 147, 1--5
We consider the tail probabilities for Brownian exit time from a class of perturbed multi-strips in Euclidean plane. Under some assumptions we prove that the long stays in a perturbed multi-strip are more likely than those in a strip of the same widt
Externí odkaz:
http://arxiv.org/abs/1807.08939
Autor:
Lifshits, M. A.
Publikováno v:
J.Math.Sci., 2015, 204, 1, 134-139 (English) Zapiski Nauchn.Semin POMI, 2013,412,207-214 (Russian)
In a recent author's work the cyclic behavior of maxima in a hierarchical summation scheme was discovered. In the present note we show how the same phenomenon appears in the scheme of conventional summation: the distribution of maximum of $2^n$ indep
Externí odkaz:
http://arxiv.org/abs/1307.0612
Autor:
Lifshits, M. A.
Publikováno v:
J.Math.Sci., 2014, 199, 2, 215-224 (English) Zapiski Nauchn.Semin POMI,2012,408,268-284 (Russian)
Let i.i.d. symmetric Bernoulli random variables be associated to the edges of a binary tree having n levels. To any leaf of the tree, we associate the sum of variables along the path connecting the leaf with the tree root. Let M_n denote the maximum
Externí odkaz:
http://arxiv.org/abs/1212.0189
Publikováno v:
High Dimensional Probability VI, Banff Volume, Birkhauser, 2013, 73-80
This is a substantially generalized version of the preprint arXiv:1105.4214 by Lifshits and Tyurin. We prove that for any pair of i.i.d. random vectors $X, Y$ in $R^n$ and any real-valued continuous negative definite function $g: R^n\to R$ the inequa
Externí odkaz:
http://arxiv.org/abs/1205.1284
Autor:
Blinova, D. I.1 (AUTHOR) daridablinova98@gmail.com, Lifshits, M. A.1 (AUTHOR)
Publikováno v:
Journal of Mathematical Sciences. Dec2022, Vol. 268 Issue 5, p573-588. 16p.