Zobrazeno 1 - 10
of 57
pro vyhledávání: '"LIEBSCHER, STEFAN"'
Autor:
Ben-Gal, Nitsan, Brehm, Bernhard, Buchner, Johannes, Hell, Juliette, Karnauhova, Anna, Liebscher, Stefan, Rendall, Alan, Smith, Brian, Stuke, Hannes, Väth, Martin, Fiedler, Bernold
Many central problems in geometry, topology, and mathematical physics lead to questions concerning the long-time dynamics of solutions to ordinary and partial differential equations. Examples range from the Einstein field equations of general relativ
Externí odkaz:
http://arxiv.org/abs/1607.04600
Autor:
Karnauhova, Anna, Liebscher, Stefan
Closed meanders are planar configurations of one or several disjoint closed Jordan curves intersecting a given line or curve transversely. They arise as shooting curves of parabolic PDEs in one space dimension, as trajectories of Cartesian billiards,
Externí odkaz:
http://arxiv.org/abs/1504.03099
An idea which has been around in general relativity for more than forty years is that in the approach to a big bang singularity solutions of the Einstein equations can be approximated by the Kasner map, which describes a succession of Kasner epochs.
Externí odkaz:
http://arxiv.org/abs/1207.2655
Autor:
Liebscher, Stefan
Publikováno v:
Electronic Journal of Differential Equations 2011(63):1-12 (2011)
We investigate the breakdown of normal hyperbolicity of a manifold of equilibria of a flow. In contrast to classical bifurcation theory we assume the absence of any flow-invariant foliation at the singularity transverse to the manifold of equilibria.
Externí odkaz:
http://arxiv.org/abs/1004.3410
Publikováno v:
Commun.Math.Phys.305:59-83,2011
We consider cosmological models of Bianchi type. In particular, we are interested in the alpha-limit dynamics near the Kasner circle of equilibria for Bianchi classes VIII and IX. They correspond to cosmological models close to the big-bang singulari
Externí odkaz:
http://arxiv.org/abs/1004.1989
Autor:
Fiedler, Bernold, Liebscher, Stefan
Publikováno v:
Proceedings of the ICM, Beijing 2002, vol. 3, 305--316
Standard bifurcation theory is concerned with families of vector fields $dx/dt = f(x,\lambda)$, $x \in \R^n$, involving one or several constant real parameters $\lambda$. Viewed as a differential equation for the pair $(x,\lambda)$, we observe a foli
Externí odkaz:
http://arxiv.org/abs/math/0304453
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Differential Equations 10 October 2000 167(1):16-35
Autor:
LIEBSCHER, STEFAN1 stefan.liebscher@fu-berlin.de
Publikováno v:
Electronic Journal of Differential Equations. 2011, Vol. 2011, Special section p1-12. 12p. 2 Diagrams, 2 Graphs.