Zobrazeno 1 - 10
of 53
pro vyhledávání: '"LIANZHONG YANG"'
Publikováno v:
AIMS Mathematics, Vol 6, Iss 8, Pp 8107-8126 (2021)
In this paper, we study the transcendental entire solutions for the nonlinear differential-difference equations of the forms: $ \begin{eqnarray*} f^{2}(z)+\widetilde{\omega} f(z)f'(z)+q(z)e^{Q(z)}f(z+c) = u(z)e^{v(z)}, \end{eqnarray*} $ and
Externí odkaz:
https://doaj.org/article/817deada43074e83abe66b60346f6d9e
Autor:
Xiaoguang Qi, Lianzhong Yang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 59,, Pp 1-9 (2015)
In this article, we utilize Nevanlinna value distribution theory to study the solvability and the growth of meromorphic function f(z) that satisfies some q-difference equations, which can be seen the q-difference analogues of Painleve I and II equ
Externí odkaz:
https://doaj.org/article/cdc67b22756249a09ff96779edde275c
Autor:
Nan Li, Lianzhong Yang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 51,, Pp 1-12 (2014)
In this article, we study the existence of non-trivial subnormal solutions for second-order linear differential equations. We show that under certain conditions some differential equations do not have subnormal solutions, also that the hyper-order
Externí odkaz:
https://doaj.org/article/64810e0ccb2043a6b4a2c3cc330bfb0d
Autor:
Xiaoguang Qi, Lianzhong Yang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 135,, Pp 1-9 (2013)
We consider the properties of meromorphic solutions to certain type of non-linear difference equations. Also we show the existence of meromorphic solutions with finite order for differential-difference equations related to the Fermat type functional
Externí odkaz:
https://doaj.org/article/f0ab695ebafd46578021fde3bb787792
Autor:
Lianzhong Yang, Nan Li
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2013, Iss 19, Pp 1-17 (2013)
In this paper, we obtain a precise estimation of the hyper order of solutions for a class of higher order linear differential equation, and also investigate the exponents of convergence of the fixed points of solutions and their first derivatives for
Externí odkaz:
https://doaj.org/article/76bc54baffea4eff864f28e0254cab82
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We mainly investigate the radial distribution of the Julia set of entire solutions to a special second order complex linear differential equation, one of the entire coefficients of which has a finite deficient value.
Externí odkaz:
https://doaj.org/article/8d13591a79054d37bde299a068b12016
Autor:
Nan Li, Lianzhong Yang
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We investigate the value distribution of difference product f(z)n∑i=1kaif(z+ci), for n≥2 and n=1, respectively, where f(z) is a transcendental entire function of finite order and ai,ci are constants satisfying ∑i=1kaif(z+ci)≢0.
Externí odkaz:
https://doaj.org/article/830da78c87274a2eb9bb15b6f476c48b
Autor:
Nan Li, Lianzhong Yang
Publikováno v:
ScienceAsia; Aug2023, Vol. 49 Issue 4, p553-559, 7p
Publikováno v:
AIMS Mathematics, Vol 6, Iss 8, Pp 8107-8126 (2021)
In this paper, we study the transcendental entire solutions for the nonlinear differential-difference equations of the forms: \begin{document}$ \begin{eqnarray*} f^{2}(z)+\widetilde{\omega} f(z)f'(z)+q(z)e^{Q(z)}f(z+c) = u(z)e^{v(z)}, \end{eqnarray*}
Autor:
Lianzhong Yang, Xiaoguang Qi
Publikováno v:
Bulletin of the Iranian Mathematical Society. 47:1491-1504
Let f be a transcendental meromorphic function of hyper-order strictly less than 1. In this paper, we deal with the uniqueness problem on f sharing two values with its nth order differences $$\Delta ^n f $$ . And this research extends earlier results