Zobrazeno 1 - 10
of 26 665
pro vyhledávání: '"LI, KE"'
Semi-supervised learning (SSL) assumes that neighbor points lie in the same category (neighbor assumption), and points in different clusters belong to various categories (cluster assumption). Existing methods usually rely on similarity measures to re
Externí odkaz:
http://arxiv.org/abs/2412.17547
Publikováno v:
ISSTA 2025
Modern software systems are often highly configurable to tailor varied requirements from diverse stakeholders. Understanding the mapping between configurations and the desired performance attributes plays a fundamental role in advancing the controlla
Externí odkaz:
http://arxiv.org/abs/2412.16888
Autor:
Moritz, Niko, Xie, Ruiming, Gaur, Yashesh, Li, Ke, Merello, Simone, Ahmed, Zeeshan, Seide, Frank, Fuegen, Christian
We propose the joint speech translation and recognition (JSTAR) model that leverages the fast-slow cascaded encoder architecture for simultaneous end-to-end automatic speech recognition (ASR) and speech translation (ST). The model is transducer-based
Externí odkaz:
http://arxiv.org/abs/2412.15415
Despite the rapid advancements in text-to-image (T2I) synthesis, enabling precise visual control remains a significant challenge. Existing works attempted to incorporate multi-facet controls (text and sketch), aiming to enhance the creative control o
Externí odkaz:
http://arxiv.org/abs/2412.11594
Infrared-visible object detection (IVOD) seeks to harness the complementary information in infrared and visible images, thereby enhancing the performance of detectors in complex environments. However, existing methods often neglect the frequency char
Externí odkaz:
http://arxiv.org/abs/2412.09258
Autor:
Tong, Bo, Lai, Bokai, Zhou, Yiyi, Luo, Gen, Shen, Yunhang, Li, Ke, Sun, Xiaoshuai, Ji, Rongrong
Despite a big leap forward in capability, multimodal large language models (MLLMs) tend to behave like a sloth in practical use, i.e., slow response and large latency. Recent efforts are devoted to building tiny MLLMs for better efficiency, but the p
Externí odkaz:
http://arxiv.org/abs/2412.04317
Autor:
FASER Collaboration, Abraham, Roshan Mammen, Ai, Xiaocong, Anders, John, Antel, Claire, Ariga, Akitaka, Ariga, Tomoko, Atkinson, Jeremy, Bernlochner, Florian U., Boeckh, Tobias, Boyd, Jamie, Brenner, Lydia, Burger, Angela, Cadoux, Franck, Cardella, Roberto, Casper, David W., Cavanagh, Charlotte, Chen, Xin, Chouhan, Dhruv, Coccaro, Andrea, Débieux, Stephane, D'Onofrio, Monica, Desai, Ansh, Dmitrievsky, Sergey, Dobre, Radu, Eley, Sinead, Favre, Yannick, Fellers, Deion, Feng, Jonathan L., Fenoglio, Carlo Alberto, Ferrere, Didier, Fieg, Max, Filali, Wissal, Firu, Elena, Garabaglu, Ali, Gibson, Stephen, Gonzalez-Sevilla, Sergio, Gornushkin, Yuri, Gwilliam, Carl, Hayakawa, Daiki, Holzbock, Michael, Hsu, Shih-Chieh, Hu, Zhen, Iacobucci, Giuseppe, Inada, Tomohiro, Iodice, Luca, Jakobsen, Sune, Joos, Hans, Kajomovitz, Enrique, Kawahara, Hiroaki, Keyken, Alex, Kling, Felix, Köck, Daniela, Kontaxakis, Pantelis, Kose, Umut, Kotitsa, Rafaella, Kuehn, Susanne, Kugathasan, Thanushan, Levinson, Lorne, Li, Ke, Liu, Jinfeng, Liu, Yi, Lutz, Margaret S., MacDonald, Jack, Magliocca, Chiara, Mäkelä, Toni, McCoy, Lawson, McFayden, Josh, Medina, Andrea Pizarro, Milanesio, Matteo, Moretti, Théo, Nakamura, Mitsuhiro, Nakano, Toshiyuki, Nevay, Laurie, Ohashi, Ken, Otono, Hidetoshi, Pang, Hao, Paolozzi, Lorenzo, Pawan, Pawan, Petersen, Brian, Preda, Titi, Prim, Markus, Queitsch-Maitland, Michaela, Rokujo, Hiroki, Rubbia, André, Sabater-Iglesias, Jorge, Sato, Osamu, Scampoli, Paola, Schmieden, Kristof, Schott, Matthias, Sfyrla, Anna, Sgalaberna, Davide, Shamim, Mansoora, Shively, Savannah, Takubo, Yosuke, Tarannum, Noshin, Theiner, Ondrej, Torrence, Eric, Martinez, Oscar Ivan Valdes, Vasina, Svetlana, Vormwald, Benedikt, Wang, Di, Wang, Yuxiao, Welch, Eli, Wielers, Monika, Xu, Yue, Zahorec, Samuel, Zambito, Stefano, Zhang, Shunliang
This letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and anti-neutrinos. The analysis is performed using proton-proton collision data at a center-of-mass e
Externí odkaz:
http://arxiv.org/abs/2412.03186
This paper proposes an Adaptive Basis-inspired Deep Neural Network (ABI-DNN) for solving partial differential equations with localized phenomena such as sharp gradients and singularities. Like the adaptive finite element method, ABI-DNN incorporates
Externí odkaz:
http://arxiv.org/abs/2412.00636
Autor:
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, T. T., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Cheng, W. S., Choi, S. K., Chu, X., Cibinetto, G., Coen, S. C., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H. Y., Fan, Y. L., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fischer, K, Fritsch, M., Fritzsch, C., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Guan, C. Y, Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hüsken, N, Imoehl, W., Jackson, J., Jaeger, S., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, H. J., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., K., X., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khoukaz, A., Kiuchi, R., Kliemt, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavania, A., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, J. W., Li, K. L., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. X., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Pogodin, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. T., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y, Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, C. W., Wang, D. Y., Wang, F., Wang, H. J., Wang, H. P., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wenzel, C. W., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, L., Yuan, S. C., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Xuyan, Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., Zu, J.
The inclusive cross sections of prompt $J/\psi$ and $\psi(3686)$ production are measured at center-of-mass energies from 3.808 to 4.951 GeV. The dataset used is 22 fb$^{-1}$ of $e^{+}e^{-}$ annihilation data collected with the BESIII detector operati
Externí odkaz:
http://arxiv.org/abs/2411.19642
Blind image quality assessment (BIQA) serves as a fundamental task in computer vision, yet it often fails to consistently align with human subjective perception. Recent advances show that multi-scale evaluation strategies are promising due to their a
Externí odkaz:
http://arxiv.org/abs/2411.09007