Zobrazeno 1 - 10
of 204
pro vyhledávání: '"LEONETTI, PAOLO"'
Let $X$ be an uncountable Polish space and let $\mathcal{I}$ be an ideal on $\omega$. A point $\eta \in X$ is an $\mathcal{I}$-limit point of a sequence $(x_n)$ taking values in $X$ if there exists a subsequence $(x_{k_n})$ convergent to $\eta$ such
Externí odkaz:
http://arxiv.org/abs/2411.10866
Given an ideal $\mathcal{I}$ on the nonnegative integers $\omega$ and a Polish space $X$, let $\mathscr{L}(\mathcal{I})$ be the family of subsets $S\subseteq X$ such that $S$ is the set of $\mathcal{I}$-limit points of some sequence taking values in
Externí odkaz:
http://arxiv.org/abs/2407.12160
Autor:
Fabiani, Sergio, Del Monte, Ettore, Baffo, Ilaria, Bonomo, Sergio, Brienza, Daniele, Campana, Riccardo, Centrone, Mauro, Contini, Gessica, Costa, Enrico, Cucinella, Giovanni, Curatolo, Andrea, De Angelis, Nicolas, De Cesare, Giovanni, Del Re, Andrea, Di Cosimo, Sergio, Di Filippo, Simone, Di Marco, Alessandro, Di Persio, Giuseppe, Donnarumma, Immacolata, Fanelli, Pierluigi, Leonetti, Paolo, Locarini, Alfredo, Loffredo, Pasqualino, Lombardi, Giovanni, Minervini, Gabriele, Modenini, Dario, Muleri, Fabio, Natalucci, Silvia, Negri, Andrea, Perelli, Massimo, Rossi, Monia, Rubini, Alda, Scalise, Emanuele, Soffitta, Paolo, Terracciano, Andrea, Tortora, Paolo, Zaccagnino, Emauele, Zambardi, Alessandro
The CUbesat Solar Polarimeter (CUSP) project is a future CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band, by means of a Compton scattering polarimeter. CUSP will allow us to study the
Externí odkaz:
http://arxiv.org/abs/2407.04748
Autor:
Lombardi, Giovanni, Fabiani, Sergio, Del Monte, Ettore, Costa, Enrico, Soffitta, Paolo, Muleri, Fabio, Baffo, Ilaria, Biancolini, Marco E., Bonomo, Sergio, Brienza, Daniele, Campana, Riccardo, Centrone, Mauro, Contini, Gessica, Cucinella, Giovanni, Curatolo, Andrea, De Angelis, Nicolas, De Cesare, Giovanni, Del Re, Andrea, Di Cosimo, Sergio, Di Filippo, Simone, Di Marco, Alessandro, Di Meo, Emanuele, Di Persio, Giuseppe, Donnarumma, Immacolata, Fanelli, Pierluigi, Leonetti, Paolo, Locarini, Alfredo, Loffredo, Pasqualino, Lopez, Andrea, Minervini, Gabriele, Modenini, Dario, Natalucci, Silvia, Negri, Andrea, Perelli, Massimo, Rossi, Monia, Rubini, Alda, Scalise, Emanuele, Terracciano, Andrea, Tortora, Paolo, Zaccagnino, Emanuele, Zambardi, Alessandro
The CUbesat Solar Polarimeter (CUSP) project aims to develop a constellation of two CubeSats orbiting the Earth to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter on board of each sa
Externí odkaz:
http://arxiv.org/abs/2407.04135
Autor:
De Cesare, Giovanni, Fabiani, Sergio, Campana, Riccardo, Lombardi, Giovanni, Del Monte, Ettore, Costa, Enrico, Baffo, Ilaria, Bonomo, Sergio, Brienza, Daniele, Centrone, Mauro, Contini, Gessica, Cucinella, Giovanni, Curatolo, Andrea, De Angelis, Nicolas, Del Re, Andrea, Di Cosimo, Sergio, Di Filippo, Simone, Di Marco, Alessandro, Di Persio, Giuseppe, Donnarumma, Immacolata, Fanelli, Pierluigi, Leonetti, Paolo, Locarini, Alfredo, Loffredo, Pasqualino, Minervini, Gabriele, Modenini, Dario, Muleri, Fabio, Natalucci, Silvia, Negri, Andrea, Perelli, Massimo, Rossi, Monia, Rubini, Alda, Scalise, Emanuele, Soffitta, Paolo, Terracciano, Andrea, Tortora, Paolo, Zaccagnino, Emauele, Zambardi, Alessandro
The CUbesat Solar Polarimeter (CUSP) project is a CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter. CUSP will allow to study the magnetic r
Externí odkaz:
http://arxiv.org/abs/2407.04134
Autor:
Leonetti, Paolo
Given an ideal $\mathcal{I}$ on $\omega$ and a bounded real sequence $\textbf{x}$, we denote by $\text{core}_{\textbf{x}}(\mathcal{I})$ the smallest interval $[a,b]$ such that $\{n \in \omega: x_n \notin [a-\varepsilon,b+\varepsilon]\} \in \mathcal{I
Externí odkaz:
http://arxiv.org/abs/2401.01136
Autor:
Leonetti, Paolo
Given a dynamical system $(X,T)$ and a family $\mathsf{I}\subseteq \mathcal{P}(\omega)$ of "small" sets of nonnegative integers, a point $x \in X$ is said to be $\mathsf{I}$-strong universal if for each $y \in X$ there exists a subsequence $(T^nx: n
Externí odkaz:
http://arxiv.org/abs/2401.01131
Autor:
Leonetti, Paolo
Let $\alpha_1, \ldots, \alpha_m$ be two or more positive reals with sum $1$, let $C\subseteq \mathbb{R}^k$ be an open convex set, and $f: C\to \mathbb{R}^k$ be a continuous injection with convex image. For each nonempty set $S\subseteq C$, let $\math
Externí odkaz:
http://arxiv.org/abs/2308.05516
We show that a normalized capacity $\nu: \mathcal{P}(\mathbf{N})\to \mathbf{R}$ is invariant with respect to an ideal $\mathcal{I}$ on $\mathbf{N}$ if and only if it can be represented as a Choquet average of $\{0,1\}$-valued finitely additive probab
Externí odkaz:
http://arxiv.org/abs/2307.16823
Autor:
Leonetti, Paolo
We define the notion of ideal convergence for sequences $(x_n)$ with values in topological spaces $X$ with respect to a family $\{F_\eta: \eta \in X\}$ of subsets of $X$ with $\eta \in F_\eta$. Each set $F_\eta$ quantifies the degree of accuracy of t
Externí odkaz:
http://arxiv.org/abs/2305.15928