Zobrazeno 1 - 10
of 1 878
pro vyhledávání: '"LDDMM"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Zhang, Chulong, Liang, Xiaokun
We propose a flow-based registration framework of medical images based on implicit neural representation. By integrating implicit neural representation and Large Deformable Diffeomorphic Metric Mapping (LDDMM), we employ a Multilayer Perceptron (MLP)
Externí odkaz:
http://arxiv.org/abs/2308.09473
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The purpose of this work is to contribute to the state of the art of deep-learning methods for diffeomorphic registration. We propose an adversarial learning LDDMM method for pairs of 3D mono-modal images based on Generative Adversarial Networks. The
Externí odkaz:
http://arxiv.org/abs/2111.12544
In deformable registration, the geometric framework - large deformation diffeomorphic metric mapping or LDDMM, in short - has inspired numerous techniques for comparing, deforming, averaging and analyzing shapes or images. Grounded in flows, which ar
Externí odkaz:
http://arxiv.org/abs/2102.07951
We innovatively propose a flexible and consistent face alignment framework, LDDMM-Face, the key contribution of which is a deformation layer that naturally embeds facial geometry in a diffeomorphic way. Instead of predicting facial landmarks via heat
Externí odkaz:
http://arxiv.org/abs/2108.00690
Autor:
Hsieh, Hsi-Wei, Charon, Nicolas
This paper introduces and studies a metamorphosis framework for geometric measures known as varifolds, which extends the diffeomorphic registration model for objects such as curves, surfaces and measures by complementing diffeomorphic deformations wi
Externí odkaz:
http://arxiv.org/abs/2112.04644
Autor:
Stouffer KM; Center for Imaging Science, Johns Hopkins University, Baltimore,MD, USA.; Department of Biomedical Engineering, Johns Hopkins University, Baltimore,MD, USA.; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.; Centre Borelli ENS Paris-Saclay, Gif-Sur-Yvette, France., Chen X; Allen Institute for Brain Science, Seattle,WA, USA., Zeng H; Allen Institute for Brain Science, Seattle,WA, USA., Charlier B; IMAG, Université de Montpellier, CNRS, Montpellier, France., Younes L; Center for Imaging Science, Johns Hopkins University, Baltimore,MD, USA.; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA., Trouvé A; Centre Borelli ENS Paris-Saclay, Gif-Sur-Yvette, France., Miller MI; Center for Imaging Science, Johns Hopkins University, Baltimore,MD, USA.; Department of Biomedical Engineering, Johns Hopkins University, Baltimore,MD, USA.; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
Publikováno v:
BioRxiv : the preprint server for biology [bioRxiv] 2024 Nov 05. Date of Electronic Publication: 2024 Nov 05.
Autor:
Hernandez, Monica
The family of PDE-constrained LDDMM methods is emerging as a particularly interesting approach for physically meaningful diffeomorphic transformations. The original combination of Gauss--Newton--Krylov optimization and Runge--Kutta integration, shows
Externí odkaz:
http://arxiv.org/abs/2006.06823
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.