Zobrazeno 1 - 10
of 66
pro vyhledávání: '"L.P. Shishkina"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
L.P. Shishkina, Grigorii I. Shishkin
Publikováno v:
Computational Methods in Applied Mathematics. 20:709-715
The convergence of difference schemes on uniform grids for an initial-boundary value problem for a singularly perturbed parabolic convection-diffusion equation is studied; the highest x-derivative in the equation is multiplied by a perturbation param
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
In this paper we consider a 1D parabolic singularly perturbed reaction-convection-diffusion problem, which has a small parameter in both the diffusion term (multiplied by the parameter e 2 ) and the convection term (multiplied by the parameter µ ) i
Autor:
L.P. Shishkina, Grigorii I. Shishkin
Publikováno v:
Finite Difference Methods. Theory and Applications ISBN: 9783030115388
FDM
FDM
On the set \(\overline{G} =G \cup S\), \(G=(0,d]\times (0,T]\) with the boundary \(S=S_0 \cup S^{\,\ell }\), we consider an initial-boundary value problem for the singularly perturbed transport equation with a perturbation parameter \(\varepsilon \)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6ed3298d107e60f162b6f30d47533f6c
https://doi.org/10.1007/978-3-030-11539-5_55
https://doi.org/10.1007/978-3-030-11539-5_55
Autor:
L.P. Shishkina, Grigorii I. Shishkin
Publikováno v:
Finite Difference Methods. Theory and Applications ISBN: 9783030115388
FDM
FDM
For a singularly perturbed parabolic convection–diffusion equation with a perturbation parameter \(\varepsilon \), \(\varepsilon \in (0,1]\), multiplying the highest-order derivative in the equation, we construct an improved computer difference sch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a7793c0e0b3cd7ef26a353b467458146
https://doi.org/10.1007/978-3-030-11539-5_8
https://doi.org/10.1007/978-3-030-11539-5_8
Autor:
L.P. Shishkina, Grigorii I. Shishkin
Publikováno v:
Mathematical Modelling and Analysis, Vol 23, Iss 4 (2018)
Mathematical Modelling and Analysis; Vol 23 No 4 (2018); 527-537
Mathematical Modelling and Analysis; Vol 23 No 4 (2018); 527-537
Grid approximation of the Cauchy problem on the interval D = {0 ≤ x ≤ d} is first studied for a linear singularly perturbed ordinary differential equation of the first order with a perturbation parameter ε multiplying the derivative in the equat
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Computational Methods in Applied Mathematics. 12:139-152
A finite difference scheme on special piecewise-uniform grids condensing in the interior layer is constructed for a singularly perturbed parabolic convection-diffusion equation with a discontinuous right-hand side and a multiple degenerating convecti
Publikováno v:
Mathematical Modelling and Analysis; Vol 20 No 5 (2015); 641-657
Mathematical Modelling and Analysis, Vol 20, Iss 5 (2015)
Mathematical Modelling and Analysis, Vol 20, Iss 5 (2015)
We consider the numerical approximation of a 1D singularly perturbed convection-diffusion problem with a multiply degenerating convective term, for which the order of degeneracy is 2p + 1, p is an integer with p ≥ 1, and such that the convective fl
Autor:
L.P. Shishkina
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319257259
For a singularly perturbed parabolic reaction-diffusion equation with a perturbation parameter \(\varepsilon\) (\(\varepsilon \in (0,1]\)) multiplying the highest-order derivative, we consider a technique to construct \(\varepsilon\)-uniformly conver
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d59e83bdd936c7c8e36bc0eebec0aaf5
https://doi.org/10.1007/978-3-319-25727-3_22
https://doi.org/10.1007/978-3-319-25727-3_22