Zobrazeno 1 - 10
of 256
pro vyhledávání: '"L.A. Peletier"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
L.A. Peletier, W.C. Troy
The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations,
In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = D.u + f(u). Here D. denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-tim
This IMA Volume in Mathematics and its Applications DEGENERATE DIFFUSIONS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on'Phase Transitions and Free Boundaries'. The aim of this workshop was to prov
Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math ematical questions posed by such equations and the important role they play in many areas of science a
Publikováno v:
Journal of Mathematical Analysis and Applications. 187:55-75
Autor:
L.A. Peletier, C.J. Budd
Publikováno v:
Asymptotic Analysis. 6:219-239
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Asymptotic Analysis. 5:283-310
Atkinson, F.V., L.A. Peletier and J. Serrin, Estimates for solutions of mean curvature equations, Asymptotic Analysis 5 (1992) 283-310. Radially symmetric solutions u(r) of the prescribed mean curvature equation involving a source term feu) may exhib
Autor:
A. Novick–Cohen, L.A. Peletier
Publikováno v:
Quarterly of Applied Mathematics. 50:759-777
Phase plane analysis is used to calculate the number of steady states for two equations which arise in the context of directional solidification: the Sivashinsky equation and the modified Sivashinsky equation.