Zobrazeno 1 - 10
of 245
pro vyhledávání: '"L.A. Kurdachenko"'
Publikováno v:
Researches in Mathematics, Vol 32, Iss 1, Pp 101-109 (2024)
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of
Externí odkaz:
https://doaj.org/article/e035b222c14c4e4084332d750cacf737
Autor:
M.R. Dixon, L.A. Kurdachenko
Publikováno v:
Researches in Mathematics, Vol 31, Iss 1, Pp 23-39 (2023)
We prove a criteria for nilpotency of left braces in terms of the $\star$-central series and also discuss Noetherian braces, obtaining some of their elementary properties. We also show that if a finitely generated brace $A$ is Smoktunowicz-nilpotent,
Externí odkaz:
https://doaj.org/article/0810f316f7114080a7001fa155e603d4
Publikováno v:
Researches in Mathematics, Vol 31, Iss 1, Pp 52-61 (2023)
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformati
Externí odkaz:
https://doaj.org/article/320e2dee4aed4006a9bdeb0f4777af66
Publikováno v:
Researches in Mathematics, Vol 31, Iss 1, Pp 62-71 (2023)
We describe the algebra of derivations of some nilpotent Leibniz algebra, having dimensionality 3.
Externí odkaz:
https://doaj.org/article/e8c61ee35b2e4dc6a8d7491d7934c500
Publikováno v:
Advances in Group Theory and Applications, Vol 5, Pp 1-31 (2018)
In this article, we study (locally) nilpotent and hyper-central Leibniz algebras. We obtained results similar to those in group theory. For instance, we proved a result analogous to the Hirsch-Plotkin Theorem for locally nilpotent groups.
Externí odkaz:
https://doaj.org/article/da4d070185c044fd880252bf05325088
Autor:
L.A. Kurdachenko, I.Ya. Subbotin
Publikováno v:
Advances in Group Theory and Applications, Vol 2, Pp 121-124 (2016)
Externí odkaz:
https://doaj.org/article/98e49385fcae4462ad1f3d184ec72827
Publikováno v:
Advances in Group Theory and Applications, Vol 1, Pp 55-76 (2016)
The paper presents some results about groups of finite special and section ranks. For instance, among others, it was proved that if every locally (soluble minimax) subgroup of a generalized radical group G has finite special rank, then G has finite s
Externí odkaz:
https://doaj.org/article/9a232c247e9a4950bdcbecfb5fe3bc44
Publikováno v:
Advances in Group Theory and Applications, Vol 1, Pp 77-96 (2016)
Necessary and sufficient conditions are given for a locally finite group to have all non-abelian subgroups serial. We also obtain results for groups whose non-abelian subgroups are permutable.
Externí odkaz:
https://doaj.org/article/6eb0b3c4da344cc4870b294dfe063c5a
Autor:
L.A. Kurdachenko, A.A. Pypka
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 6, Iss 2, Pp 310-316 (2014)
In this paper we obtained new automorphic analogue of Baer's theorem for the case when an arbitrary subgroup $A\leq Aut(G)$ includes a group of inner automorphisms $Inn(G)$ of agroup $G$ and the factor-group $A/Inn(G)$ is co-layer-finite.
Externí odkaz:
https://doaj.org/article/d8c4800b3dfa4b899e6472b46817ce6f
Publikováno v:
Reports of the National Academy of Sciences of Ukraine. :18-23
Let L be an algebra over a field F. Then L is called a left Leibniz algebra if its multiplication operations [×, ×] addition- ally satisfy the so-called left Leibniz identity: [[a,b],c] = [a,[b,c]] – [b,[a,c]] for all elements a, b, c Î L. In th