Zobrazeno 1 - 10
of 23
pro vyhledávání: '"L. S. Pul'kina"'
Publikováno v:
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 24:407-423
Рассмотрена задача с динамическим краевым условием, учитывающим наличие демпфера при закреплении, для гиперболического уравнения на п
Publikováno v:
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 23:229-245
In this paper, we consider a nonlocal problem with integral conditions for hyperbolic equation. Close attention focuses on degenerate integral conditions, namely, on the second kind integral conditions which degenerate into the first kind conditions
Autor:
L. S. Pul’kina
Publikováno v:
Journal of Mathematical Sciences. 219:245-252
We prove the existence and uniqueness of a weak solution to the initial-boundary value problem for a fourth order pseudohyperbolic equation in a cylinder with nonlocal boundary conditions containing the first and second order time-derivatives amd the
A problem with a nonlocal, with respect to time, condition for multidimensional hyperbolic equations
Autor:
A. E. Savenkova, L. S. Pul’kina
Publikováno v:
Russian Mathematics. 60:33-43
We study a boundary-value problem for a hyperbolic equation with a nonlocal with respect to time-variable integral condition. We obtain sufficient conditions for unique solvability of the nonlocal problem. The proof is based on reduction of the nonlo
Autor:
S. V. Kirichenko, L. S. Pul’kina
Publikováno v:
Russian Mathematics. 58:13-21
In this paper we consider a boundary-value problem for one-dimensional hyperbolic equation with nonlocal initial data in integral form. We prove the existence and uniqueness of the generalized solution.
Autor:
L. S. Pul’kina
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 278:199-207
Two problems with nonlinear boundary conditions are studied. Existence and uniqueness theorems are proved for generalized solutions to each problem.
Autor:
L. S. Pul’kina
Publikováno v:
Russian Mathematics. 56:26-37
We consider a nonlocal problem with integral conditions of the 1st kind. The main goal is to prove the unique solvability of this problem under the assumption that kernels of nonlocal conditions depend both on spatial and time variables. To this end
Autor:
L. S. Pul’kina
Publikováno v:
Russian Mathematics. 56:62-69
In this paper we consider two initial-boundary value problems with nonlocal conditions. The main goal is to propose a method for proving the solvability of nonlocal problems with integral conditions of the first kind. The proposed method is based on
Autor:
E. I. Moiseev, Alexandr Pavlovich Soldatov, Aleksandr Anatolievich Andreev, Viktoria Adamovna Nakhusheva, Arsen Vladimirovich Pskhu, Muvasharkhan Tanabayevich Dzhenaliev, Alexandr Nikolaevich Zarubin, Aleksandr Ivanovich Kozhanov, Kamil Basirovich Sabitov, Evgenii Vladimirovich Radkevich, Oleg Aleksandrovich Repin, L. S. Pul’kina, Nãusrat R Radjabov, Adam Maremovich Nakhushev, Vladimir Pavlovich Radchenko, Eugeniy Nikolaevitch Ogorodnikov
Publikováno v:
Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 5:6-9
Autor:
L. S. Pul’kina
Publikováno v:
Differential Equations. 44:1119-1125
We consider a mixed initial-boundary value problem for a multidimensional (with respect to the space variables) hyperbolic equation with a nonlocal boundary condition containing an integral of the desired solution. We prove the unique solvability of