Zobrazeno 1 - 10
of 21
pro vyhledávání: '"L. Miguel Rodrigues"'
Autor:
Francis Filbet, L. Miguel Rodrigues
Publikováno v:
Journal de l'École polytechnique — Mathématiques
Journal de l'École polytechnique — Mathématiques, 2020, 7, pp.1009-1067. ⟨10.5802/jep.134⟩
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2020, 7, pp.1009-1067. ⟨10.5802/jep.134⟩
Journal de l'École polytechnique — Mathématiques, 2020, 7, pp.1009-1067. ⟨10.5802/jep.134⟩
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2020, 7, pp.1009-1067. ⟨10.5802/jep.134⟩
International audience; We study the asymptotic behavior of solutions to the Vlasov equation in the presence of a strong external magnetic field. In particular we provide a mathematically rigorous derivation of the guiding-center approximation in the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8f0af9c7956c5af692748a4b342a8e7
https://hal.science/hal-01933746v3/file/3D-full-asymptotics_revision.pdf
https://hal.science/hal-01933746v3/file/3D-full-asymptotics_revision.pdf
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, 2019, 367 (1), pp.265-316. ⟨10.1007/s00220-018-3277-7⟩
Communications in Mathematical Physics, Springer Verlag, 2019, 367 (1), pp.265-316. ⟨10.1007/s00220-018-3277-7⟩
Communications in Mathematical Physics, 2019, 367 (1), pp.265-316. ⟨10.1007/s00220-018-3277-7⟩
Communications in Mathematical Physics, Springer Verlag, 2019, 367 (1), pp.265-316. ⟨10.1007/s00220-018-3277-7⟩
We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint Venant equations, based on a periodic Evans-Lopatinski determinant analogous to the periodic Evans function of G
Publikováno v:
Nonlinearity
Nonlinearity, 2021, 34 (1), pp.578-641. ⟨10.1088/1361-6544/abcb0a⟩
Nonlinearity, IOP Publishing, 2021, 34 (1), pp.578-641
Nonlinearity, 2021, 34 (1), pp.578-641. ⟨10.1088/1361-6544/abcb0a⟩
Nonlinearity, IOP Publishing, 2021, 34 (1), pp.578-641
Motivated by the ongoing study of dispersive shock waves in non integrable systems, we propose and analyze a set of wave parameters for periodic waves of a large class of Hamiltonian partial differential systems -- including the generalized Korteweg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32207c775c528727570d228f2f8eb56d
https://hal.archives-ouvertes.fr/hal-02365963/file/BMR2-II.pdf
https://hal.archives-ouvertes.fr/hal-02365963/file/BMR2-II.pdf
Autor:
L. Miguel Rodrigues, Bu Gra Kabil
Publikováno v:
Journal of Differential Equations. 260:2994-3028
In the present contribution we investigate some features of dynamical lattice sys- tems near periodic traveling waves. First, following the formal averaging method of Whitham, we derive modulation systems expected to drive at main order the time evol
Autor:
L. Miguel Rodrigues, Kevin Zumbrun
Publikováno v:
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, 2016, 48 (1), pp.268--280. ⟨10.1137/15M1016242⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2016, 48 (1), pp.268--280. ⟨10.1137/15M1016242⟩
SIAM Journal on Mathematical Analysis, 2016, 48 (1), pp.268--280. ⟨10.1137/15M1016242⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2016, 48 (1), pp.268--280. ⟨10.1137/15M1016242⟩
International audience; A technical obstruction preventing the conclusion of nonlinear stability of large-Froude number roll waves of the St. Venant equations for inclined thin film flow is the " slope condition " of Johnson-Noble-Zumbrun, used to ob
Autor:
L. Miguel Rodrigues
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2018, 274 (9), pp.2553-2605. ⟨10.1016/j.jfa.2018.02.004⟩
Journal of Functional Analysis, Elsevier, 2018, 274 (9), pp.2553-2605. 〈10.1016/j.jfa.2018.02.004〉
Journal of Functional Analysis, 2018, 274 (9), pp.2553-2605. ⟨10.1016/j.jfa.2018.02.004⟩
Journal of Functional Analysis, Elsevier, 2018, 274 (9), pp.2553-2605. ⟨10.1016/j.jfa.2018.02.004⟩
Journal of Functional Analysis, Elsevier, 2018, 274 (9), pp.2553-2605. 〈10.1016/j.jfa.2018.02.004〉
Journal of Functional Analysis, 2018, 274 (9), pp.2553-2605. ⟨10.1016/j.jfa.2018.02.004⟩
International audience; We provide a detailed study of the dynamics obtained by linearizing the Korteweg– de Vries equation about one of its periodic traveling waves, a cnoidal wave. In a suitable sense, linearly analogous to space-modulated stabil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98dba05423acafee3b3d5a3a0dca136a
https://hal.archives-ouvertes.fr/hal-01541239/document
https://hal.archives-ouvertes.fr/hal-01541239/document
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Inventiones Mathematicae
Inventiones Mathematicae, 2014, 197 (1), pp.115-213
Inventiones Mathematicae, Springer Verlag, 2014, 197 (1), pp.115-213
Inventiones Mathematicae, 2014, 197 (1), pp.115-213
Inventiones Mathematicae, Springer Verlag, 2014, 197 (1), pp.115-213
We establish nonlinear stability and asymptotic behavior of traveling periodic waves of viscous conservation laws under localized perturbations or nonlocalized perturbations asymptotic to constant shifts in phase, showing that long-time behavior is g
Autor:
Pascal Noble, L. Miguel Rodrigues
Publikováno v:
Indiana University Mathematics Journal. 62:753-783
We study the spectral stability of periodic wave trains of the Korteweg-de Vries-Kuramoto-Sivashinsky equation which are, among many other applications, often used to describethe evo- lution of a thin liquid film flowing down an inclined ramp. More p
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, Springer Verlag, 2013, pp.669-692
Archive for Rational Mechanics and Analysis, Springer Verlag, 2013, pp.669-692
International audience; In a companion paper, we established nonlinear stability with detailed diffusive rates of decay of spectrally stable periodic traveling-wave solutions of reaction diffusion systems under small perturbations consisting of a non