Zobrazeno 1 - 10
of 13
pro vyhledávání: '"L. J. McGibbney"'
Publikováno v:
Journal of Information and Data Management. 12
Key-value stores propose a straightforward yet powerful data model. Data is modeled using key-value pairs where values can be arbitrary objects and written/read using the key associated with it. In addition to their simple interface, such data stores
Publikováno v:
Applied Sciences, Vol 10, Iss 3, p 1127 (2020)
Applied Sciences
Volume 10
Issue 3
Applied Sciences
Volume 10
Issue 3
One longstanding complication with Earth data discovery involves understanding a user’s search intent from the input query. Most of the geospatial data portals use keyword-based match to search data. Little attention has focused on the spatial and
Autor:
Chaowei Yang, Chris Finch, David Moroni, Yun Li, Thomas S. Huang, Edward M. Armstrong, Yongyao Jiang, L. J. McGibbney, Fei Hu
Publikováno v:
International Journal of Digital Earth. 11:956-971
Current search engines in most geospatial data portals tend to induce users to focus on one single-data characteristic dimension (e.g. popularity and release date). This approach largely fails to take account of users’ multidimensional preferences
Autor:
Zaihua Ji, Mark A. Bourassa, Vardis Tsontos, Elizabeth Yam, Thomas Cram, F. R. Greguska, L. J. McGibbney, Edward M. Armstrong, Jocelyn Elya, Shawn R. Smith, Chaowei Yang, Brian Wilson, Joseph C. Jacob, S. J. Worley, Nga Quach, Thomas S. Huang, Yongyao Jiang, Yun Li, Maya DeBellis
Publikováno v:
Frontiers in Marine Science, Vol 6 (2019)
An Integrated Science Data Analytics Platform is an environment that enables the confluence of resources for scientific investigation. It harmonizes data, tools and computational resources to enable the research community to focus on the investigatio
Autor:
L. J. McGibbney, Manzhu Yu, David Moroni, Thomas S. Huang, Chaowei Yang, Yun Li, Yongyao Jiang, Edward M. Armstrong, Lara Kamal
Publikováno v:
Computers & Geosciences. 142:104520
Finding geospatial data has been a big challenge regarding the data size and heterogeneity across various domains. Previous work has explored using machine learning to improve geospatial data search ranking, but it usually relies on training data lab
Autor:
Yun Li, Chris Finch, F. R. Greguska, Edward M. Armstrong, David Moroni, Yongyao Jiang, L. J. McGibbney, Chaowei Yang, Fei Hu, Thomas S. Huang
Publikováno v:
ISPRS International Journal of Geo-Information, Vol 7, Iss 2, p 62 (2018)
ISPRS International Journal of Geo-Information; Volume 7; Issue 2; Pages: 62
ISPRS International Journal of Geo-Information; Volume 7; Issue 2; Pages: 62
Discovering and accessing geospatial data presents a significant challenge for the Earth sciences community as massive amounts of data are being produced on a daily basis. In this article, we report a smart web-based geospatial data discovery system
Autor:
Greguska Frank, David Moroni, L. J. McGibbney, Thomas S. Huang, Manzhu Yu, Mingyue Lu, Yongyao Jiang, Yun Li, Chaowei Yang, Juan Gu, Edward M. Armstrong
Publikováno v:
Applied Sciences, Vol 9, Iss 6, p 1114 (2019)
Applied Sciences
Volume 9
Issue 6
Applied Sciences
Volume 9
Issue 6
The volume, variety, and velocity of different data, e.g., simulation data, observation data, and social media data, are growing ever faster, posing grand challenges for data discovery. An increasing trend in data discovery is to mine hidden relation
Autor:
L. J. McGibbney, Bimal Kumar
Publikováno v:
Automation in Construction. 35:121-130
Of primary importance within the domain of open data and more specifically open legislation, lies the essential central requirement for data to be available in a user-oriented manner; whereby the public and professionals alike can consume, share, rep
Publikováno v:
ASE Workshops
The Apache Release Audit Tool (RAT) performs software open source license auditing and checking, however RAT fails to successfully audit today's large code bases. Being a natural language processing (NLP) tool and a crawler, RAT marches through a cod
Autor:
Renato Marroquin Mogrovejo, Chris A. Mattmann, L. J. McGibbney, Paul Ramirez, Brian Wilson, K. D. Whitehall, Rahul Palamuttam, Rishi Verma
Publikováno v:
IEEE BigData
In this paper we present SciSpark, a Big Data framework that extends Apache™ Spark for scaling scientific computations. The paper details the initial architecture and design of SciSpark. We demonstrate how SciSpark achieves parallel ingesting and p