Zobrazeno 1 - 10
of 29
pro vyhledávání: '"L. I. Danilov"'
Autor:
L. I. Danilov
Publikováno v:
Mathematical Notes. 110:497-510
We prove that the spectrum of a periodic 3D magnetic Schrodinger operator whose electric potential $$V=d\mu/dx$$ is the derivative of a measure is absolutely continuous provided that the distribution $$d|\mu|/dx$$ is $$(-\Delta)$$ -bounded in the sen
Autor:
L. I. Danilov
Publikováno v:
Theoretical and Mathematical Physics. 202:41-57
We define a class of periodic electric potentials for which the spectrum of the two-dimensional Schrodinger operator is absolutely continuous in the case of a homogeneous magnetic field B with a rational flux η = (2π)−1Bυ(K), where υ(K) is the
Autor:
L. I. Danilov
Publikováno v:
Sbornik: Mathematics. 209:1611-1643
Autor:
L. I. Danilov
Publikováno v:
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki. :97-120
We prove that Besicovitch almost periodic multivalued maps ${\bf R}\ni t \to F(t) \in cl U$ have Besicovitch almost periodic selections, where $cl U$ is the collection of non-empty closed sets of a complete metric space $U$.
23 pages, LaTeX2e
23 pages, LaTeX2e
Autor:
L. I. Danilov
Publikováno v:
Theoretical and Mathematical Physics. 134:392-403
The absence of eigenvalues (of infinite multiplicity) for the two-dimensional periodic Schrodinger operator with a variable metric is proved. The method of proof does not use the change of variables reducing the metric to a scalar form.
Autor:
L. I. Danilov
Publikováno v:
Mathematical Notes. 73:46-57
We prove the absolute continuity of the spectrum of the Schrodinger operator in \(L^2 ({\mathbb{R}}^n )\), \(n \geqslant 3\), with periodic (with a common period lattice \(\Lambda\)) scalar \(V\) and vector \(A \in C^1 ({\mathbb{R}}^n ,{\mathbb{R}}^n
Autor:
L I Danilov
Publikováno v:
Sbornik: Mathematics. 191:1773-1796
Weakly almost periodic measure-valued functions taking values in the space of Borel measures of variable sign in a complete separable metric space are considered. A norm introduced in the space defines a metric on the set of probability Borel measure
Autor:
L. I. Danilov
Publikováno v:
Theoretical and Mathematical Physics. 124:859-871
The absolute continuity of the spectrum for the periodic Dirac operator $$\hat D = \sum\limits_{j - 1}^n {\left( { - i\frac{\partial }{{\partial x_j }} - A_j } \right)} \hat \alpha _j + \hat V^{\left( 0 \right)} + \hat V^{\left( 1 \right)} ,x \in R^n
Autor:
L. I. Danilov
Publikováno v:
Differential Equations. 36:262-271
Autor:
L. I. Danilov
Publikováno v:
Theoretical and Mathematical Physics. 118:1-11
We prove the absolute continuity of the Dirac operator spectrum inR2 with the scalar potential V and the vector potential A=(A1, A2) being periodic functions (with a common period lattice) such that V, Aj≠Llocq(R2), q>2.