Zobrazeno 1 - 10
of 78
pro vyhledávání: '"L. Golinskii"'
Autor:
L. Golinskii
Publikováno v:
Integral Equations and Operator Theory. 93
Autor:
S. Favorov, L. Golinskii
Publikováno v:
Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory ISBN: 9783030448189
Given two compact sets, E and F, on the unit circle, we study the class of subharmonic functions on the unit disk which can grow at the direction of E and F (sets of singularities) at different rate. The main result concerns the Blaschke-type conditi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::528a690457f2a14caef31108125e70a3
https://doi.org/10.1007/978-3-030-44819-6_12
https://doi.org/10.1007/978-3-030-44819-6_12
Autor:
Vladimir Kadets, L. Golinskii
In 2000 V. Lomonosov suggested a counterexample to the complex version of the Bishop-Phelps theorem on modulus support functionals. We discuss the $c_0$-analog of that example and demonstrate that the set of sup-attaining functionals is non-trivial,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73e3fce586cfe5064db387c45e90592a
Publikováno v:
Journal of Fourier Analysis and Applications. 21:915-960
Given a function $$f$$ on the positive half-line $${\mathbb R}_+$$ and a sequence (finite or infinite) of points $$X=\{x_k\}_{k=1}^\omega $$ in $${\mathbb R}^n$$ , we define and study matrices $${\mathcal S}_X(f)=[f(\Vert x_i-x_j\Vert )]_{i,j=1}^\ome
Autor:
L. Golinskii
The Darlington synthesis problem (in the scalar case) is the problem of embedding a given contractive analytic function to an inner $2\times 2$ matrix function as the entry. A fundamental result of Arov--Douglas--Helton relates this algebraic propert
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3e28f20ed1e94860461246fcf20ecc4
Publikováno v:
Integral Equations and Operator Theory. 69:479-508
We develop a scattering theory for CMV matrices, similar to the Faddeev–Marchenko theory. A necessary and sufficient condition is obtained for the uniqueness of the solution of the inverse scattering problem. We also obtain two sufficient condition
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The main object under consideration is a class $\Phi_n\backslash\Phi_{n+1}$ of radial positive definite functions on $\R^n$ which do not admit \emph{radial positive definite continuation} on $\R^{n+1}$. We find certain necessary and sufficient condit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d34e0cdac59a6018367529058c25493
http://arxiv.org/abs/1502.07179
http://arxiv.org/abs/1502.07179
Autor:
L. Golinskii, M. Kudryavtsev
Publikováno v:
Sbornik: Mathematics. 196:817-844
The discrete spectrum of complex banded matrices which are compact perturbations of the standard banded matrix of order $p$ is under consideration. The rate of stabilization for the matrix entries sharp in the sense of order which provides finiteness