Zobrazeno 1 - 10
of 340
pro vyhledávání: '"L. D. Meshalkin"'
Autor:
Alberto Marradi
Publikováno v:
Italian Political Science Review/Rivista Italiana di Scienza Politica. 4:453-454
Publikováno v:
Nuclear Physics & Atomic Energy. 2024, Vol. 25 Issue 1, p79-88. 10p.
Publikováno v:
Studies on Russian Economic Development; Dec2024, Vol. 35 Issue 6, p778-787, 10p
Autor:
A. F. Galkov, L. D. Meshalkin
Publikováno v:
Biomedical Engineering. 22:160-165
1. The methods described in this paper are united by the complexity of the real-life situation in which the corresponding algorithms are being developed: small samples, insufficient knowledge of the mechanisms and regularities of the modeled phenomen
Autor:
A. I. Kurochkina, L. D. Meshalkin
Publikováno v:
Journal of Soviet Mathematics. 17:2269-2275
The question of parametrizing multidimensional distributions was considered in [1–2]. Based on the results in those articles, a new approach to the parametrization of regression dependences is proposed in this article.
Autor:
L. D. Meshalkin, V. I. Serdobol’skii
Publikováno v:
Theory of Probability & Its Applications. 23:741-750
Autor:
L. D. Meshalkin
Publikováno v:
Theory of Probability & Its Applications. 5:106-114
Let $F_p^n (x)$ be an $(n,p)$ binomial distribution function, $\mathfrak{G}$ a set of all infinitely divisible laws and \[ \rho \left( {F_p^n ,\mathfrak{G}} \right) = \mathop {\inf }\limits_{G \in \mathfrak{G}} \mathop {\sup }\limits_x \left| {F_p^n
Autor:
L. D. Meshalkin
Publikováno v:
Theory of Probability & Its Applications. 6:233-252
Let $\Re (l)$ be a set of distribution functions of random variables $\zeta $ such that $|\zeta | < l,{\bf D}\zeta = 1$, $\mathfrak{G}$ a set of infinitely divisible laws and $\xi _1 ,\xi _2 , \cdo...
Autor:
L. D. Meshalkin
Publikováno v:
Theory of Probability & Its Applications. 3:335-357
Consider the scheme of trial sequences \[ \begin{gathered} \nu _{11} \hfill \\ \nu _{21} ,\nu _{22} \hfill \\ \cdots \hfill \\ \nu _{n1} ,\nu _{n2} , \cdots ,\nu _{nn} \hfill \\ \cdots \cdots \cdots \hfill \\ \end{gathered} \] The sequence $\nu _{nk}
Autor:
L. D. Meshalkin
Publikováno v:
Biometrika. 60:175-178
SUMMARY Follow-up studies often record a large number of factors that are suspected of being related to the occurrence of an event. How many of them can one hope to discover as being statistically significantly associated with this event? The number