Zobrazeno 1 - 10
of 35
pro vyhledávání: '"L. Aharouch"'
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2006, Iss 19, Pp 1-18 (2006)
In this paper we study the existence of solutions for the generated boundary value problem, with initial datum being an element of $L^1(\Omega)+W^{-1, p'}(\Omega, w^{*})$ $$-{\rm div}a(x, u, \nabla u) + g(x, u, \nabla u) = f-{\rm div}F $$ where $a(
Externí odkaz:
https://doaj.org/article/9adf1a56516d4130bcad21b13b81ec9e
Publikováno v:
Abstract and Applied Analysis, Vol 2005, Iss 1, Pp 11-31 (2005)
Externí odkaz:
https://doaj.org/article/65bacbc5feeb4a86837f5893ea2dc560
Publikováno v:
Abstract and Applied Analysis, Vol 2006 (2006)
We will be concerned with the existence result of unilateral problem associated to the equations of the form Au+g(x,u,∇u)=f, where A is a Leray-Lions operator from its domain D(A)⊂W01LM(Ω) into W−1EM¯(Ω). On the nonlinear lower order term g(
Externí odkaz:
https://doaj.org/article/a019d7fdb1d3438597405fd724738bf6
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of
This paper deals with the existence and regularity of some unilateral problem associated to a nonlinear equation of type - div ( a ( x , u , ∇ u ) ) + H ( x , u , ∇ u ) = f {-\operatorname{div}(a(x,u,\nabla u))+H(x,u,\nabla u)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1cec2aeb748c2a55a8d37ec65afaa0bc
http://hdl.handle.net/20.500.11769/492819
http://hdl.handle.net/20.500.11769/492819
Autor:
J. Bennouna, L. Aharouch
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 72:3553-3565
In this paper, we prove the existence and uniqueness of solutions of unilateral problems of the type − div a ( x , ∇ u ) = f in the framework of Orlicz spaces. The main contribution of our work is proving the existence of a solution without any r
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 68:2362-2380
We prove the existence results in the setting of Orlicz spaces for the unilateral problem associated to the following equation, A u + g ( x , u , ∇ u ) = f , where A is a Leray–Lions operator acting from its domain D ( A ) ⊂ W 0 1 L M ( Ω ) in
Publikováno v:
Portugaliae Mathematica. :95-120
Publikováno v:
Applicationes Mathematicae. 33:217-241
Publikováno v:
Abstract and Applied Analysis, Vol 2005, Iss 1, Pp 11-31 (2005)
Abstr. Appl. Anal. 2005, no. 1 (2005), 11-31
Abstr. Appl. Anal. 2005, no. 1 (2005), 11-31
We will be concerned with the existence result of a degenerate elliptic unilateral problem of the formAu+H(x,u,∇u)=f, whereAis a Leray-Lions operator fromW1,p(Ω,w)into its dual. On the nonlinear lower-order termH(x,u,∇u), we assume that it is a