Zobrazeno 1 - 10
of 1 963 536
pro vyhledávání: '"L. 2"'
Autor:
Uttenthaler, S.
Context: L$_2$ Puppis (L$_2$ Pup) is a nearby red giant star and an important object in late-type star research because it has a dust disc and potentially a companion. Aims: L$_2$ Pup is often called the second-closest Asymptotic Giant Branch (AGB) s
Externí odkaz:
http://arxiv.org/abs/2411.13388
Autor:
Kim, Taehun
We provide a set of conditions that is necessary and sufficient for the $L^{2}$-wellposedness of the Cauchy problem for fifth and sixth order variable-coefficient linear dispersive equations. The necessity of these conditions had been presented by Ta
Externí odkaz:
http://arxiv.org/abs/2410.15104
Autor:
Wang, Te-Chun
In this article, we consider the $d$-dimensional mollified stochastic heat equation (SHE) when the mollification parameter is turned off. Here, we concentrate on the high-dimensional case $d \geq 3$. Recently, the limiting higher moments of the two-d
Externí odkaz:
http://arxiv.org/abs/2410.06426
Autor:
Karmakar, Shrija, Layek, Ritwik Kumar
The problem of $\mathcal{L}_2$ stabilization of a state feedback stochastic control loop is investigated under different constraints. The discrete time linear time invariant (LTI) open loop plant is chosen to be unstable. The additive white Gaussian
Externí odkaz:
http://arxiv.org/abs/2409.03398
Autor:
Oyadare, O. O.
We consider the irreducibility of the regular representation of a noncompact semisimpe Lie group $G$ on the Hilbert space of the image of the Joint-Eigenspace Fourier transform on its corresponding symmetric space $G/K.$ The $L^{2}-$decomposition of
Externí odkaz:
http://arxiv.org/abs/2410.09075
Autor:
Zhu, Xincai1 (AUTHOR) wuhanxiao19991228@163.com, Wu, Hanxiao1 (AUTHOR)
Publikováno v:
Axioms (2075-1680). Sep2024, Vol. 13 Issue 9, p571. 14p.
We consider the Cauchy problem to the general defocusing and focusing $p\times q$ matrix nonlinear Schr\"{o}dinger (NLS) equations with initial data allowing arbitrary-order poles and spectral singularities. By establishing the $L^{2}$-Sobolev space
Externí odkaz:
http://arxiv.org/abs/2408.14709
Autor:
Ivanisvili, Paata, Stone, Yonathan
We refine the classical Cauchy--Schwartz inequality $\|X\|_{1} \leq \|X\|_{2}$ by demonstrating that for any $p$ and $q$ with $q>p>2$, there exists a constant $C=C(p,q)$ such that $\|X\|_1 \leq 1 - C \Big{(}\|X\|_p^p - 1\Big{)}^{\frac{q-2}{q-p}}\Big{
Externí odkaz:
http://arxiv.org/abs/2407.04835