Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Lüthje, Mikael"'
Deep learning has become an area of interest in most scientific areas, including physical sciences. Modern networks apply real-valued transformations on the data. Particularly, convolutions in convolutional neural networks discard phase information e
Externí odkaz:
http://arxiv.org/abs/1905.12321
Geoscience data often have to rely on strong priors in the face of uncertainty. Additionally, we often try to detect or model anomalous sparse data that can appear as an outlier in machine learning models. These are classic examples of imbalanced lea
Externí odkaz:
http://arxiv.org/abs/1904.02254
Publikováno v:
In Computers and Geosciences January 2021 146
Autor:
Welch, Michael, Lüthje, Mikael
Publikováno v:
Welch, M & Lüthje, M 2022, ' Modelling the evolution of large fracture networks ', 15th World Congress on Computational Mechanics, Yokohoma, Japan, 31/07/2022-05/08/2022 .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1202::435e6f29e0c9b90566696340d7eaf3be
https://orbit.dtu.dk/en/publications/04716916-4f31-4e30-a179-9d5598bb05c0
https://orbit.dtu.dk/en/publications/04716916-4f31-4e30-a179-9d5598bb05c0
Publikováno v:
Mohammadzaheri, A, de Ridder, S, Calvert, A & Lüthje, M 2022, ' Low-Cost CCS Monitoring with Sparse Data Acquisition ', Danish Offshore Technology Conference 2022, Kolding, Denmark, 29/11/2022-30/11/2022 .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1202::7c12c33dba2793c4898eef1fce88ecc4
https://orbit.dtu.dk/en/publications/1e5bfdd8-10db-4f28-a29a-d35f2928a8ae
https://orbit.dtu.dk/en/publications/1e5bfdd8-10db-4f28-a29a-d35f2928a8ae
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Geoscientific Model Development Discussions; 5/19/2022, p1-42, 42p
Including robust insights from signal processing, physics and geoscience improves key metrics in deep neural network training and inference.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::722e8cdb65ecde72602d5682fb1b59f3
Autor:
Dramsch, Jesper Soeren, Lüthje, Mikael
Recent advances in machine learning relies on convolutional deep neural networks. These are often trained on cropped image patches. Pertaining to non-stationary seismic signals this may introduce low frequency noise and non-generalizability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c6fa55bada144b7f72bde70822ddb8b
Autor:
Dramsch, Jesper Soeren, Lüthje, Mikael
4D Seismic data has proven invaluable in O&G asset management, however, it’s engineering challenges are still plentiful. These challenges include non-repeatable noise, tie-in and match with production curves, as well as, separation of imaging, pres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0607a797000c71302bdc566c6fcdd722