Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Lück, Martin"'
Publikováno v:
In International Journal of Pharmaceutics: X December 2024 8
Publikováno v:
In Journal of Pharmaceutical Sciences April 2024 113(4):1020-1028
Publikováno v:
In Procedia CIRP 2024 124:751-754
Second-order Boolean logic is a generalization of QBF, whose constant alternation fragments are known to be complete for the levels of the exponential time hierarchy. We consider two types of restriction of this logic: 1) restrictions to term constru
Externí odkaz:
http://arxiv.org/abs/2007.03867
Autor:
Lück, Martin
A specification given as a formula in linear temporal logic (LTL) defines a system by its set of traces. However, certain features such as information flow security constraints are rather modeled as so-called hyperproperties, which are sets of sets o
Externí odkaz:
http://arxiv.org/abs/2004.12682
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lück, Martin, Vilander, Miikka
Publikováno v:
Logical Methods in Computer Science, Volume 15, Issue 3 (August 20, 2019) lmcs:5263
Propositional team logic is the propositional analog to first-order team logic. Non-classical atoms of dependence, independence, inclusion, exclusion and anonymity can be expressed in it, but for all atoms except dependence only exponential translati
Externí odkaz:
http://arxiv.org/abs/1903.02344
Autor:
Lück, Martin
We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In thi
Externí odkaz:
http://arxiv.org/abs/1804.04968
Autor:
Lück, Martin
Publikováno v:
Logical Methods in Computer Science, Volume 15, Issue 2 (April 11, 2019) lmcs:5065
We study modal team logic MTL, the team-semantical extension of modal logic ML closed under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion logic, are well-understood. However, due to the unrestricted Boolean ne
Externí odkaz:
http://arxiv.org/abs/1709.05253