Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Löwenstein, Christian"'
The independence number $\alpha(H)$ of a hypergraph $H$ is the maximum cardinality of a set of vertices of $H$ that does not contain an edge of $H$. Generalizing Shearer's classical lower bound on the independence number of triangle-free graphs (J. C
Externí odkaz:
http://arxiv.org/abs/1507.04323
Publikováno v:
Discrete Applied Mathematics 200:52-58, 2016
A locating-dominating set of a graph $G$ is a dominating set $D$ of $G$ with the additional property that every two distinct vertices outside $D$ have distinct neighbors in $D$; that is, for distinct vertices $u$ and $v$ outside $D$, $N(u) \cap D \ne
Externí odkaz:
http://arxiv.org/abs/1412.2376
We show that a cubic graph $G$ of order $n$ has an induced $2$-regular subgraph of order at least a) $\frac{n-2}{4-\frac{4}{k}}$, if $G$ has no induced cycle of length more than $k$, b) $\frac{5n+6}{8}$, if $G$ has no induced cycle of length more tha
Externí odkaz:
http://arxiv.org/abs/1406.2438
The maximum cardinality of an induced $2$-regular subgraph of a graph $G$ is denoted by $c_{\rm ind}(G)$. We prove that if $G$ is an $r$-regular graph of order $n$, then $c_{\rm ind}(G) \geq \frac{n}{2(r-1)} + \frac{1}{(r-1)(r-2)}$ and we prove that
Externí odkaz:
http://arxiv.org/abs/1406.0606
For $k \ge 2$, let $H$ be a $k$-uniform hypergraph on $n$ vertices and $m$ edges. The transversal number $\tau(H)$ of $H$ is the minimum number of vertices that intersect every edge. Chv\'{a}tal and McDiarmid [Combinatorica 12 (1992), 19--26] proved
Externí odkaz:
http://arxiv.org/abs/1401.4851
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 2, Pp 369-381 (2017)
In the domination game on a graph G, the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated. This process eventually produces a dominating set of G; Dominator aim
Externí odkaz:
https://doaj.org/article/4e7c3244e2fa49cbaea5079593f9d2b9
Publikováno v:
In Discrete Applied Mathematics 19 February 2016 200:52-58
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 2, Pp 427-438 (2016)
Let H = (V, E) be a hypergraph with vertex set V and edge set E. A dominating set in H is a subset of vertices D ⊆ V such that for every vertex v ∈ V \ D there exists an edge e ∈ E for which v ∈ e and e ∩ D ≠ ∅. The domination number γ
Externí odkaz:
https://doaj.org/article/8f3cf3596ea141f48cff1afe5777080e
Publikováno v:
In Discrete Applied Mathematics 31 December 2014 179:120-128