Zobrazeno 1 - 10
of 147
pro vyhledávání: '"Löhr, Wolfgang"'
We prove several properties of the EMCEL scheme, which is capable of approximating one-dimensional continuous strong Markov processes in distribution on the path space (the scheme is briefly recalled). Special cases include irregular stochastic diffe
Externí odkaz:
http://arxiv.org/abs/2004.10316
Autor:
Löhr, Wolfgang, Winter, Anita
Publikováno v:
Bull. Soc. Math. France , Vol. 149, No. 1 (2021), pp. 55-117
In this paper we present with algebraic trees a novel notion of (continuum) trees which generalizes countable graph-theoretic trees to (potentially) uncountable structures. For that purpose we focus on the tree structure given by the branch point map
Externí odkaz:
http://arxiv.org/abs/1811.11734
Publikováno v:
Annals of Probability, Vol. 48, No. 5 (2020), pp. 2565-2590
In [Ald00], Aldous investigates a symmetric Markov chain on cladograms and gives bounds on its mixing and relaxation times. The latter bound was sharpened in [Sch02]. In the present paper we encode cladograms as binary, algebraic measure trees and sh
Externí odkaz:
http://arxiv.org/abs/1805.12057
Publikováno v:
The Annals of Probability, 2020 Sep 01. 48(5), 2565-2590.
Externí odkaz:
https://www.jstor.org/stable/26966047
Autor:
Ay, Nihat, Löhr, Wolfgang
Publikováno v:
Theory in Biosciences, 134 no. 3, pp. 105-116, 2015
We consider a general model of the sensorimotor loop of an agent interacting with the world. This formalises Uexk\"ull's notion of a \emph{function-circle}. Here, we assume a particular causal structure, mechanistically described in terms of Markov k
Externí odkaz:
http://arxiv.org/abs/1603.08389
Autor:
Löhr, Wolfgang, Rippl, Thomas
Publikováno v:
Electron. Commun. Probab. 21 (2016), no. 60, 1-16
We prove general results about separation and weak$^\#$-convergence of boundedly finite measures on separable metric spaces and Souslin spaces. More precisely, we consider an algebra of bounded real-valued, or more generally a $*$-algebra $\mathcal{F
Externí odkaz:
http://arxiv.org/abs/1603.05818
Autor:
Löhr, Wolfgang
Many complexity measures are defined as the size of a minimal representation in a specific model class. One such complexity measure, which is important because it is widely applied, is statistical complexity. It is defined for discrete-time, stationa
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A11017
https://ul.qucosa.de/api/qucosa%3A11017/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A11017/attachment/ATT-0/
Autor:
Kliem, Sandra, Löhr, Wolfgang
Publikováno v:
Electron. J. Probab. 20 (2015), no. 73, 1-24
We give criteria on the existence of a so-called mark function in the context of marked metric measure spaces (mmm-spaces). If an mmm-space admits a mark function, we call it functionally-marked metric measure space (fmm-space). This is not a closed
Externí odkaz:
http://arxiv.org/abs/1412.2039
Publikováno v:
Stochastic Proc. Appl. 126 (2016), no. 9, 2527-2553
In Athreya, L\"ohr, Winter (2016), an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sens
Externí odkaz:
http://arxiv.org/abs/1407.6309
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.