Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Léo Planche"'
Autor:
Léo Planche, Morgan André
We consider a continuous-time stochastic model of spiking neurons. In this model, we have a finite or countable number of neurons which are vertices in some graph $G$ where the edges indicate the synaptic connection between them. We focus on metastab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ab3348888e4993626b02db49fd3f91a
http://arxiv.org/abs/1910.00055
http://arxiv.org/abs/1910.00055
Publikováno v:
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science, Elsevier, 2019, 346, pp.159-169. ⟨10.1016/j.entcs.2019.08.015⟩
Electronic Notes in Theoretical Computer Science, 2019, 346, pp.159-169. ⟨10.1016/j.entcs.2019.08.015⟩
LAGOS
Electronic Notes in Theoretical Computer Science, Elsevier, 2019, 346, pp.159-169. ⟨10.1016/j.entcs.2019.08.015⟩
Electronic Notes in Theoretical Computer Science, 2019, 346, pp.159-169. ⟨10.1016/j.entcs.2019.08.015⟩
LAGOS
International audience; In this paper we investigate the Minimum Eccentricity Isometric Cycle (MEIC) problem. Given a graph, this problem consists in finding an isometric cycle with smallest possible eccentricity k. We show that this problem is NP-Ha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d892b0cb06a0c02f47ee80954717c82b
https://hal.inria.fr/hal-02430756/document
https://hal.inria.fr/hal-02430756/document
Publikováno v:
28th International Symposium on Algorithms and Computation (ISAAC 2017)
28th International Symposium on Algorithms and Computation (ISAAC 2017), Dec 2017, Phuket, Thailand. ⟨10.4230/LIPIcs.ISAAC.2017.15⟩
MAP5 2017-18. 2017
28th International Symposium on Algorithms and Computation (ISAAC 2017), Dec 2017, Phuket, Thailand. ⟨10.4230/LIPIcs.ISAAC.2017.15⟩
MAP5 2017-18. 2017
International audience; We introduce the problem of hub-laminar decomposition which generalizes that of computing a shortest path with minimum eccentricity (MESP). Intuitively, it consists in decomposing a graph into several paths that collectively h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc23302dbd295b2c90be084fe997562f
https://hal.science/hal-01511357v2/document
https://hal.science/hal-01511357v2/document
Publikováno v:
COCOA 2016, Combinatorial Optimization and Applications-10th International Conference
COCOA 2016, Combinatorial Optimization and Applications-10th International Conference, Dec 2016, Hong Kong, China. pp.216-229, ⟨10.1007/978-3-319-48749-6_16⟩
MAP5 2016-26. 2016
COCOA 2016, Combinatorial Optimization and Applications-10th International Conference, Dec 2016, Hong Kong, China. pp.216-229, 2016, 〈https://conference.cs.cityu.edu.hk/cocoa2016/〉. 〈10.1007/978-3-319-48749-6_16〉
Combinatorial Optimization and Applications ISBN: 9783319487489
COCOA
COCOA 2016, Combinatorial Optimization and Applications-10th International Conference, Dec 2016, Hong Kong, China. pp.216-229, ⟨10.1007/978-3-319-48749-6_16⟩
MAP5 2016-26. 2016
COCOA 2016, Combinatorial Optimization and Applications-10th International Conference, Dec 2016, Hong Kong, China. pp.216-229, 2016, 〈https://conference.cs.cityu.edu.hk/cocoa2016/〉. 〈10.1007/978-3-319-48749-6_16〉
Combinatorial Optimization and Applications ISBN: 9783319487489
COCOA
International audience; The Minimum Eccentricity Shortest Path (MESP) Problem consists in determining a shortest path (a path whose length is the distance between its extremities) of minimum eccentricity in a graph. It was introduced by Dragan and Le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df887d4f94e0d7ab2c374a34df06d7bb
https://hal.archives-ouvertes.fr/hal-01366782/document
https://hal.archives-ouvertes.fr/hal-01366782/document