Zobrazeno 1 - 10
of 161
pro vyhledávání: '"László Monostori"'
Autor:
Christian Brecher, Sven Jung, Robert Schmitt, Niels König, Balázs Cs. Csáji, Péter Egri, László Monostori, Krisztián Balázs Kis, József Váncza, Stephan Wein, Simon Pieske, Jelena Ochs
Publikováno v:
CIRP Journal of Manufacturing Science and Technology. 33:369-379
The potential in treating chronic and life-threatening diseases by stem cell therapies can greatly be exploited via the efficient automation of stem cell production. Working with living material though poses severe challenges to automation. Recently,
Publikováno v:
CIRP Annals. 70:635-658
The evolution of manufacturing systems, influenced by changes along four axes - products, technology, business strategies and production paradigms - is presented. Adoption of human-centric decision making in meshed collaboration with intelligent syst
Autor:
László Monostori, József Váncza
Publikováno v:
Procedia CIRP. 93:323-328
The impact of the forth industrial revolution on the social and natural environment is considered significant and far-reaching, even though the interactions of the human, natural and manufactured assets are less understood, extremely complex and unpr
Autor:
Gerry Byrne, László Monostori
Publikováno v:
CIRP Journal of Manufacturing Science and Technology.
Autor:
R. Wertheim, F.J.A.M. van Houten, Konrad Wegener, O. Damm, László Monostori, Roberto Teti, Gerry Byrne, F. Sammler
Publikováno v:
CIRP Journal of Manufacturing Science and Technology, 34
CIRP journal of manufacturing science and technology, 34, 6-21. Elsevier
CIRP journal of manufacturing science and technology, 34, 6-21. Elsevier
This paper reports on a highly ambitious international study undertaken in the period 2018–2020 on the topic of convergence between biology and advanced manufacturing systems. The international team (authors of this paper) worked together to analys
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cd194a53251edc667705822c54384b1b
https://hdl.handle.net/20.500.11850/507060
https://hdl.handle.net/20.500.11850/507060
Autor:
László Monostori, József Váncza, Sven Jung, Simon Pieske, Péter Egri, Niels König, Robert Schmitt, Balázs Cs. Csáji, Christian Brecher, Stephan Wein, Jelena Ochs, Krisztián Balázs Kis
Publikováno v:
CIRP Journal of Manufacturing Science and Technology.
The potential in treating chronic and life-threatening diseases by stem cell therapies can greatly be exploited via the efficient automation of stem cell production. Working with living material though poses severe challenges to automation. Recently,
Autor:
Christian Brecher, József Váncza, Simon Pieske, Sven Jung, Péter Egri, Stephan Wein, Robert Schmitt, Balázs Cs. Csáji, László Monostori, Niels König, Jelena Ochs, Krisztián Balázs Kis
Publikováno v:
Procedia CIRP 88, 600-605 (2020). doi:10.1016/j.procir.2020.05.105 special issue: "13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 17-19 July 2019, Gulf of Naples, Italy / Edited by Roberto Teti, Doriana M. D'Addona"
13. CIRP Conference on Intelligent Computation in Manufacturing Engineering, Naples, Italy, 2010-07-17-2019-07-19
Procedia CIRP
13. CIRP Conference on Intelligent Computation in Manufacturing Engineering, Naples, Italy, 2010-07-17-2019-07-19
Procedia CIRP
13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Naples, Italy, 17 Jul 2010 - 19 Jul 2019; Procedia CIRP 88, 600-605 (2020). doi:10.1016/j.procir.2020.05.105 special issue: "13th CIRP Conference on Intelligent Computation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41722cc16a110a3a701f5407f00f6c29
Autor:
László Monostori, József Váncza
Publikováno v:
Smart and Sustainable Manufacturing Systems
Manufacturing became one of the main targets of the coronavirus disease 2019 pandemic Important questions such as how to deal with the drastic changes (up and down) in demand, and how to keep production ongoing with a decimated workforce and crippled
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3dd8b39e31630b6344b9340ab52ffd5b
https://eprints.sztaki.hu/10030/
https://eprints.sztaki.hu/10030/
Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer
Autor:
Lukas Lingitz, Dávid Gyulai, András Pfeiffer, Fazel Ansari, Wilfried Sihn, László Monostori, Viola Gallina
Publikováno v:
Procedia CIRP
The accurate prediction of manufacturing lead times (LT) significantly influences the quality and efficiency of production planning and scheduling (PPS). Traditional planning and control methods mostly calculate average lead times, derived from histo
Publikováno v:
Precision Engineering. 48:279-291
Micro scale machining process monitoring is one of the key issues in highly precision manufacturing. Monitoring of machining operation not only reduces the need of expert operators but also reduces the chances of unexpected tool breakage which may da