Zobrazeno 1 - 10
of 64
pro vyhledávání: '"László Losonczi"'
Autor:
László Losonczi
Publikováno v:
Linear Algebra and its Applications. 608:282-298
In this paper we consider pentadiagonal ( n + 1 ) × ( n + 1 ) matrices with two sub-diagonals above and below the main diagonal at distances k and l from the main diagonal where 1 ≤ k l ≤ n . We give explicit formulae for the eigenpairs of imper
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 57:298-311
This survey revisits Jenő Egerváry and Otto Szász’s article of 1928 on trigonometric polynomials and simple structured matrices focussing mainly on the latter topic. In particular, we concentrate on the spectral theory for the first type of the
Autor:
Carlos M. da Fonseca, László Losonczi
Publikováno v:
Publicationes Mathematicae Debrecen. 97:507-523
Autor:
László Losonczi
Publikováno v:
Mathematical Inequalities & Applications. :647-652
Autor:
László Losonczi
Publikováno v:
Publicationes Mathematicae Debrecen. 94:455-466
Autor:
László Losonczi
Let $n,k$ be fixed natural numbers with $1\le k\le n$ and let $A_{n+1,k,2k,\dots,sk}$ denote an $(n+1)\times (n+1)$ complex multidiagonal matrix having $s=[n/k]$ sub- and superdiagonals at distances $k,2k,\dots,sk$ from the main diagonal. We prove th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6574fcd931149abf1db642242c9f3546
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114
In this note, we generalize an interesting recent characterization of tridiagonal M-matrices whose inverse is still tridiagonal to any acyclic matrix. We discuss a possible extension. Several illustrative examples are provided.
Autor:
László Losonczi
Publikováno v:
Publicationes Mathematicae Debrecen. 88:177-192
Autor:
Zsolt Páles, László Losonczi
Publikováno v:
Journal of Mathematical Analysis and Applications. 345(1):135-146
Given two continuous functions f , g : I → R such that g is positive and f / g is strictly monotone, and a probability measure μ on the Borel subsets of [ 0 , 1 ] , the two variable mean M f , g ; μ : I 2 → I is defined by M f , g ; μ ( x , y
Autor:
László Losonczi
Publikováno v:
Aequationes mathematicae. 74:262-281
Let \(f, g: I \rightarrow{\mathbb{R}}\) be given continuous functions on the interval I such that g ≠ 0, and \(h :=\frac{f}{g}\) is strictly monotonic (thus invertible) on I. Taking an increasing nonconstant function μ on [0, 1] $$ M_{f,g,\mu}(x,