Zobrazeno 1 - 10
of 27
pro vyhledávání: '"LÖFWALL, CLAS"'
Autor:
Löfwall, Clas
We begin with proving a formula relating the Hilbert series of a graded algebra $A$ and the Poincar\'{e} series for $A$ in two variables. This gives the Fr\"oberg formula in the case where the bigraded $Tor^A(k,k)$ is concentrated on the diagonal, wh
Externí odkaz:
http://arxiv.org/abs/2103.07735
Autor:
Löfwall, Clas
We will start from the beginning and define a matroid and its Orlik-Solomon algebra and holonomy Lie algebra, but first we give some background from topology and cohomology. A (central) hyperplane arrangement is a finite number of subspaces of codime
Externí odkaz:
http://arxiv.org/abs/2012.12044
Autor:
Löfwall, Clas
We study graded connected algebras over a field of characteristic zero and give an explicit formula for the cyclic homology of a tensor algebra. By means of a slightly new definition of David Anick's notion "strongly free" we are able to prove that c
Externí odkaz:
http://arxiv.org/abs/1711.03644
Autor:
Löfwall, Clas, Lundqvist, Samuel
Publikováno v:
J. Softw. Alg. Geom. 11 (2021) 9-14
We introduce the Macaulay2 package GradedLieAlgebras for doing computations in graded Lie algebras presented by generators and relations.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1708.05838
Autor:
Löfwall, Clas
Publikováno v:
Communications in Algebra 44(11) 2014
In [7, Papadima and Suciu, When does the associated graded Lie algebra of an arrangement group decompose? Comment. Math. Helv. {\bf 81:4} (2006), 859--875] it is proved that the holonomy Lie algebra of an arrangement of hyperplanes through origo deco
Externí odkaz:
http://arxiv.org/abs/1412.3068
Publikováno v:
J. Pure Appl. Alg. 219 (2015), no. 3, 591--621
We prove in particular that the Gorenstein numerical semigroup ring generated by (36,48,50,52,56,60,66,67,107,121,129,135) has a transcendental series of Betti numbers. The methods of proofs are the theory of Golod homomorphism and the theory of infi
Externí odkaz:
http://arxiv.org/abs/1212.0720
Autor:
Löfwall, Clas
Publikováno v:
Journal of Commutative Algebra 2(4) 2010
An infinite filiform Lie algebra L is residually nilpotent and its graded associated with respect to the lower central series has smallest possible dimension in each degree but is still infinite. This means that gr(L) is of dimension two in degree on
Externí odkaz:
http://arxiv.org/abs/0911.4624
Publikováno v:
In Journal of Pure and Applied Algebra March 2015 219(3):591-621
Autor:
LÖFWALL, CLAS
Publikováno v:
Journal of Commutative Algebra, 2010 Dec 01. 2(4), 429-436.
Externí odkaz:
https://www.jstor.org/stable/26343021
Publikováno v:
American Journal of Mathematics, 1988 Apr 01. 110(2), 301-322.
Externí odkaz:
https://www.jstor.org/stable/2374504