Zobrazeno 1 - 10
of 401
pro vyhledávání: '"LÖFFLER, MAARTEN"'
Autor:
Abrahamsen, Mikkel, Buchin, Kevin, Buchin, Maike, Kleist, Linda, Löffler, Maarten, Schlipf, Lena, Schulz, André, Stade, Jack
We study two well-known reconfiguration problems. Given a start and a target configuration of geometric objects in a polygon, we wonder whether we can move the objects from the start configuration to the target configuration while avoiding collisions
Externí odkaz:
http://arxiv.org/abs/2412.21017
A pseudo-triangle is a simple polygon with exactly three convex vertices, and all other vertices (if any) are distributed on three concave chains. A pseudo-triangulation~$\mathcal{T}$ of a point set~$P$ in~$\mathbb{R}^2$ is a partitioning of the conv
Externí odkaz:
http://arxiv.org/abs/2402.12357
Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons (fragments), glued along pairs of equally long oriented edges, where each fragment is endowed with the geodesic metric arising from its Euclidean metri
Externí odkaz:
http://arxiv.org/abs/2303.08937
Autor:
Aichholzer, Oswin, Hackl, Thomas, Löffler, Maarten, Pilz, Alexander, Parada, Irene, Scheucher, Manfred, Vogtenhuber, Birgit
Given two distinct point sets $P$ and $Q$ in the plane, we say that $Q$ \emph{blocks} $P$ if no two points of $P$ are adjacent in any Delaunay triangulation of $P\cup Q$. Aichholzer et al. (2013) showed that any set $P$ of $n$ points in general posit
Externí odkaz:
http://arxiv.org/abs/2210.12015
Autor:
Buchin, Kevin, Evans, Will, Frati, Fabrizio, Kostitsyna, Irina, Löffler, Maarten, Ophelders, Tim, Wolff, Alexander
In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an $n$-vertex planar graph, there exists a piecewise-li
Externí odkaz:
http://arxiv.org/abs/2210.05384
Autor:
Bhore, Sujoy, Klute, Fabian, Löffler, Maarten, Nöllenburg, Martin, Terziadis, Soeren, Villedieu, Anaïs
We study a variant of the geometric multicut problem, where we are given a set $\mathcal{P}$ of colored and pairwise interior-disjoint polygons in the plane. The objective is to compute a set of simple closed polygon boundaries (fences) that separate
Externí odkaz:
http://arxiv.org/abs/2209.14804
Autor:
Cleve, Jonas, Grelier, Nicolas, Knorr, Kristin, Löffler, Maarten, Mulzer, Wolfgang, Perz, Daniel
Let $\mathcal{D}$ be a set of straight-line segments in the plane, potentially crossing, and let $c$ be a positive integer. We denote by $P$ the union of the endpoints of the straight-line segments of $\mathcal{D}$ and of the intersection points betw
Externí odkaz:
http://arxiv.org/abs/2209.02103
Let $\cal R$ be a set of $n$ colored imprecise points, where each point is colored by one of $k$ colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible
Externí odkaz:
http://arxiv.org/abs/2208.13865
Autor:
Kobourov, Stephen G., Löffler, Maarten, Montecchiani, Fabrizio, Pilipczuk, Marcin, Rutter, Ignaz, Seidel, Raimund, Sorge, Manuel, Wulms, Jules
A decision tree recursively splits a feature space $\mathbb{R}^{d}$ and then assigns class labels based on the resulting partition. Decision trees have been part of the basic machine-learning toolkit for decades. A large body of work treats heuristic
Externí odkaz:
http://arxiv.org/abs/2205.07756
Let $P$ be a set of $n$ colored points. We develop efficient data structures that store $P$ and can answer chromatic $k$-nearest neighbor ($k$-NN) queries. Such a query consists of a query point $q$ and a number $k$, and asks for the color that appea
Externí odkaz:
http://arxiv.org/abs/2205.00277