Zobrazeno 1 - 10
of 223
pro vyhledávání: '"Kyritsis, Dimitrios C"'
When deploying machine learning estimators in science and engineering (SAE) domains, it is critical to avoid failed estimations that can have disastrous consequences, e.g., in aero engine design. This work focuses on detecting and correcting failed s
Externí odkaz:
http://arxiv.org/abs/2309.13985
Five recently developed chemical kinetics mechanisms for ammonia oxidation are analysed and compared, in the context of homogeneous adiabatic autoignition. The analysis focuses on the ignition delay and is based on the explosive mode that is shown to
Externí odkaz:
http://arxiv.org/abs/2304.03549
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in nonhomogeneous temperature fields. The aim of this research is to explore
Externí odkaz:
http://arxiv.org/abs/2212.07836
The current success of machine learning on image-based combustion monitoring is based on massive data, which is costly even impossible for industrial applications. To address this conflict, we introduce few-shot learning in order to achieve combustio
Externí odkaz:
http://arxiv.org/abs/2210.07845
Physics-based inverse modeling techniques are typically restricted to particular research fields, whereas popular machine-learning-based ones are too data-dependent to guarantee the physical compatibility of the solution. In this paper, Self-Validate
Externí odkaz:
http://arxiv.org/abs/2210.06071
Publikováno v:
In Energy Conversion and Management 15 December 2024 322
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Cleaner Production 20 December 2023 432
Publikováno v:
In Fuel 15 November 2023 352