Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Kyle E. Watters"'
Autor:
Kale Kundert, James E. Lucas, Kyle E. Watters, Christof Fellmann, Andrew H. Ng, Benjamin M. Heineike, Christina M. Fitzsimmons, Benjamin L. Oakes, Jiuxin Qu, Neha Prasad, Oren S. Rosenberg, David F. Savage, Hana El-Samad, Jennifer A. Doudna, Tanja Kortemme
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
Control of CRISPR-Cas9 activity allows for fine-tuning of editing and gene expression. Here the authors use gRNAs modified with RNA aptamers to enable small molecule control in bacterial systems.
Externí odkaz:
https://doaj.org/article/75a198d8f2ba47a985055e98863b4ffd
Publikováno v:
Pathogens and Global Health
article-version (VoR) Version of Record
article-version (VoR) Version of Record
Global health security is constantly under threat from infectious diseases. Despite advances in biotechnology that have improved diagnosis and treatment of such diseases, delays in detecting outbreaks and the lack of countermeasures for some biologic
Autor:
Blake McMahon, Rachel J. Lew, Jennifer A. Doudna, Haridha Shivram, Christof Fellmann, Kyle E. Watters
Publikováno v:
Proceedings of the National Academy of Sciences. 117:6531-6539
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block
Autor:
Benjamin L. Oakes, Tanja Kortemme, Christof Fellmann, James E. Lucas, Kyle E. Watters, Jennifer A. Doudna, Hana El-Samad, Benjamin M. Heineike, Christina M. Fitzsimmons, Andrew H. Ng, David F. Savage, Oren S. Rosenberg, Neha K. Prasad, Kale Kundert, Jiuxin Qu
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
Kundert, Kale; Lucas, James E; Watters, Kyle E; Fellmann, Christof; Ng, Andrew H; Heineike, Benjamin M; et al.(2019). Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.. Nature communications, 10(1), 2127. doi: 10.1038/s41467-019-09985-2. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3t52t2n5
Nature communications, vol 10, iss 1
Nature Communications
Kundert, Kale; Lucas, James E; Watters, Kyle E; Fellmann, Christof; Ng, Andrew H; Heineike, Benjamin M; et al.(2019). Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.. Nature communications, 10(1), 2127. doi: 10.1038/s41467-019-09985-2. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3t52t2n5
Nature communications, vol 10, iss 1
Nature Communications
The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-mo
Autor:
Marco J. Lobba, Gavin J. Knott, Brittney W. Thornton, Jun-Jie Liu, Basem Al-Shayeb, Kyle E. Watters, Jennifer A. Doudna
Publikováno v:
Nature structural & molecular biology, vol 26, iss 4
Knott, Gavin J; Thornton, Brittney W; Lobba, Marco J; Liu, Jun-Jie; Al-Shayeb, Basem; Watters, Kyle E; et al.(2019). Broad-spectrum enzymatic inhibition of CRISPR-Cas12a.. Nature structural & molecular biology, 26(4), 315-321. doi: 10.1038/s41594-019-0208-z. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/72n7n3pp
Nature structural & molecular biology
Knott, Gavin J; Thornton, Brittney W; Lobba, Marco J; Liu, Jun-Jie; Al-Shayeb, Basem; Watters, Kyle E; et al.(2019). Broad-spectrum enzymatic inhibition of CRISPR-Cas12a.. Nature structural & molecular biology, 26(4), 315-321. doi: 10.1038/s41594-019-0208-z. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/72n7n3pp
Nature structural & molecular biology
Cas12a is a bacterial RNA-guided nuclease used widely for genome editing and, more recently, as a molecular diagnostic. In bacteria, Cas12a enzymes can be inhibited by bacteriophage-derived proteins, anti-CRISPRs (Acrs), to thwart clustered regularly
Autor:
Anthony T. Iavarone, Amina Asif, Simon Eitzinger, Gavin J. Knott, Jennifer A. Doudna, Kyle E. Watters, Fayyaz ul Amir Afsar Minhas
Publikováno v:
Nucleic acids research, vol 48, iss 9
Nucleic Acids Research
Nucleic Acids Research
The increasing use of CRISPR-Cas9 in medicine, agriculture and synthetic biology has accelerated the drive to discover new CRISPR-Cas inhibitors as potential mechanisms of control for gene editing applications. Many such anti-CRISPRs have been found
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::906d127b3834d627f11ed6527e89b1be
https://escholarship.org/uc/item/5vm5b1v1
https://escholarship.org/uc/item/5vm5b1v1
Autor:
Kyle E, Watters, Haridha, Shivram, Christof, Fellmann, Rachel J, Lew, Blake, McMahon, Jennifer A, Doudna
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America
Significance Many mobile genetic elements contain anti-CRISPRs (Acrs) to evade host CRISPR defenses. Acrs have been discovered that inhibit therapeutically relevant CRISPR-Cas gene editors such as Cas12 and Cas9, including many inhibitors for Strepto
Publikováno v:
Watters, Kyle E; Fellmann, Christof; Bai, Hua B; Ren, Shawn M; & Doudna, Jennifer A. (2018). Systematic discovery of natural CRISPR-Cas12a inhibitors.. Science (New York, N.Y.), 362(6411), 236-239. doi: 10.1126/science.aau5138. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/2vs8h2xs
Science (New York, N.Y.), vol 362, iss 6411
Science (New York, N.Y.), vol 362, iss 6411
Cas12 inhibitors join the anti-CRISPR family Bacteria and their phages continually coevolve in a molecular arms race. For example, phages use anti-CRISPR proteins to inhibit the bacterial type I and II CRISPR systems (see the Perspective by Koonin an
Autor:
Kyle E. Watters, Jeremy R. Thompson, Julius B. Lucks, Keith L. Perry, Sharon Aviran, Krishna Choudhary
Publikováno v:
Nucleic Acids Research
Nucleic acids research, vol 46, iss 5
Nucleic acids research, vol 46, iss 5
In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and c
Autor:
Christof Fellmann, Haridha Shivram, Blake McMahon, Kyle E. Watters, Jennifer A. Doudna, Rachel J. Lew
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, vol 117, iss 12
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::683fb1c666c375f7a4be0124350a33ef
https://doi.org/10.1101/799403
https://doi.org/10.1101/799403