Zobrazeno 1 - 10
of 1 411
pro vyhledávání: '"Kwon SE"'
Autor:
Lee, Jung Hyun, Kim, Jeonghoon, Yang, June Yong, Kwon, Se Jung, Yang, Eunho, Yoo, Kang Min, Lee, Dongsoo
With the commercialization of large language models (LLMs), weight-activation quantization has emerged to compress and accelerate LLMs, achieving high throughput while reducing inference costs. However, existing post-training quantization (PTQ) techn
Externí odkaz:
http://arxiv.org/abs/2407.11534
The massive computational costs associated with large language model (LLM) pretraining have spurred great interest in reduced-precision floating-point representations to accelerate the process. As a result, the BrainFloat16 (BF16) precision has becom
Externí odkaz:
http://arxiv.org/abs/2405.18710
Autor:
Yoo, Kang Min, Han, Jaegeun, In, Sookyo, Jeon, Heewon, Jeong, Jisu, Kang, Jaewook, Kim, Hyunwook, Kim, Kyung-Min, Kim, Munhyong, Kim, Sungju, Kwak, Donghyun, Kwak, Hanock, Kwon, Se Jung, Lee, Bado, Lee, Dongsoo, Lee, Gichang, Lee, Jooho, Park, Baeseong, Shin, Seongjin, Yu, Joonsang, Baek, Seolki, Byeon, Sumin, Cho, Eungsup, Choe, Dooseok, Han, Jeesung, Jin, Youngkyun, Jun, Hyein, Jung, Jaeseung, Kim, Chanwoong, Kim, Jinhong, Kim, Jinuk, Lee, Dokyeong, Park, Dongwook, Sohn, Jeong Min, Han, Sujung, Heo, Jiae, Hong, Sungju, Jeon, Mina, Jung, Hyunhoon, Jung, Jungeun, Jung, Wangkyo, Kim, Chungjoon, Kim, Hyeri, Kim, Jonghyun, Kim, Min Young, Lee, Soeun, Park, Joonhee, Shin, Jieun, Yang, Sojin, Yoon, Jungsoon, Lee, Hwaran, Bae, Sanghwan, Cha, Jeehwan, Gylleus, Karl, Ham, Donghoon, Hong, Mihak, Hong, Youngki, Hong, Yunki, Jang, Dahyun, Jeon, Hyojun, Jeon, Yujin, Jeong, Yeji, Ji, Myunggeun, Jin, Yeguk, Jo, Chansong, Joo, Shinyoung, Jung, Seunghwan, Kim, Adrian Jungmyung, Kim, Byoung Hoon, Kim, Hyomin, Kim, Jungwhan, Kim, Minkyoung, Kim, Minseung, Kim, Sungdong, Kim, Yonghee, Kim, Youngjun, Kim, Youngkwan, Ko, Donghyeon, Lee, Dughyun, Lee, Ha Young, Lee, Jaehong, Lee, Jieun, Lee, Jonghyun, Lee, Jongjin, Lee, Min Young, Lee, Yehbin, Min, Taehong, Min, Yuri, Moon, Kiyoon, Oh, Hyangnam, Park, Jaesun, Park, Kyuyon, Park, Younghun, Seo, Hanbae, Seo, Seunghyun, Sim, Mihyun, Son, Gyubin, Yeo, Matt, Yeom, Kyung Hoon, Yoo, Wonjoon, You, Myungin, Ahn, Doheon, Ahn, Homin, Ahn, Joohee, Ahn, Seongmin, An, Chanwoo, An, Hyeryun, An, Junho, An, Sang-Min, Byun, Boram, Byun, Eunbin, Cha, Jongho, Chang, Minji, Chang, Seunggyu, Cho, Haesong, Cho, Youngdo, Choi, Dalnim, Choi, Daseul, Choi, Hyoseok, Choi, Minseong, Choi, Sangho, Choi, Seongjae, Choi, Wooyong, Chun, Sewhan, Go, Dong Young, Ham, Chiheon, Han, Danbi, Han, Jaemin, Hong, Moonyoung, Hong, Sung Bum, Hwang, Dong-Hyun, Hwang, Seongchan, Im, Jinbae, Jang, Hyuk Jin, Jang, Jaehyung, Jang, Jaeni, Jang, Sihyeon, Jang, Sungwon, Jeon, Joonha, Jeong, Daun, Jeong, Joonhyun, Jeong, Kyeongseok, Jeong, Mini, Jin, Sol, Jo, Hanbyeol, Jo, Hanju, Jo, Minjung, Jung, Chaeyoon, Jung, Hyungsik, Jung, Jaeuk, Jung, Ju Hwan, Jung, Kwangsun, Jung, Seungjae, Ka, Soonwon, Kang, Donghan, Kang, Soyoung, Kil, Taeho, Kim, Areum, Kim, Beomyoung, Kim, Byeongwook, Kim, Daehee, Kim, Dong-Gyun, Kim, Donggook, Kim, Donghyun, Kim, Euna, Kim, Eunchul, Kim, Geewook, Kim, Gyu Ri, Kim, Hanbyul, Kim, Heesu, Kim, Isaac, Kim, Jeonghoon, Kim, Jihye, Kim, Joonghoon, Kim, Minjae, Kim, Minsub, Kim, Pil Hwan, Kim, Sammy, Kim, Seokhun, Kim, Seonghyeon, Kim, Soojin, Kim, Soong, Kim, Soyoon, Kim, Sunyoung, Kim, Taeho, Kim, Wonho, Kim, Yoonsik, Kim, You Jin, Kim, Yuri, Kwon, Beomseok, Kwon, Ohsung, Kwon, Yoo-Hwan, Lee, Anna, Lee, Byungwook, Lee, Changho, Lee, Daun, Lee, Dongjae, Lee, Ha-Ram, Lee, Hodong, Lee, Hwiyeong, Lee, Hyunmi, Lee, Injae, Lee, Jaeung, Lee, Jeongsang, Lee, Jisoo, Lee, Jongsoo, Lee, Joongjae, Lee, Juhan, Lee, Jung Hyun, Lee, Junghoon, Lee, Junwoo, Lee, Se Yun, Lee, Sujin, Lee, Sungjae, Lee, Sungwoo, Lee, Wonjae, Lee, Zoo Hyun, Lim, Jong Kun, Lim, Kun, Lim, Taemin, Na, Nuri, Nam, Jeongyeon, Nam, Kyeong-Min, Noh, Yeonseog, Oh, Biro, Oh, Jung-Sik, Oh, Solgil, Oh, Yeontaek, Park, Boyoun, Park, Cheonbok, Park, Dongju, Park, Hyeonjin, Park, Hyun Tae, Park, Hyunjung, Park, Jihye, Park, Jooseok, Park, Junghwan, Park, Jungsoo, Park, Miru, Park, Sang Hee, Park, Seunghyun, Park, Soyoung, Park, Taerim, Park, Wonkyeong, Ryu, Hyunjoon, Ryu, Jeonghun, Ryu, Nahyeon, Seo, Soonshin, Seo, Suk Min, Shim, Yoonjeong, Shin, Kyuyong, Shin, Wonkwang, Sim, Hyun, Sim, Woongseob, Soh, Hyejin, Son, Bokyong, Son, Hyunjun, Son, Seulah, Song, Chi-Yun, Song, Chiyoung, Song, Ka Yeon, Song, Minchul, Song, Seungmin, Wang, Jisung, Yeo, Yonggoo, Yi, Myeong Yeon, Yim, Moon Bin, Yoo, Taehwan, Yoo, Youngjoon, Yoon, Sungmin, Yoon, Young Jin, Yu, Hangyeol, Yu, Ui Seon, Zuo, Xingdong, Bae, Jeongin, Bae, Joungeun, Cho, Hyunsoo, Cho, Seonghyun, Cho, Yongjin, Choi, Taekyoon, Choi, Yera, Chung, Jiwan, Han, Zhenghui, Heo, Byeongho, Hong, Euisuk, Hwang, Taebaek, Im, Seonyeol, Jegal, Sumin, Jeon, Sumin, Jeong, Yelim, Jeong, Yonghyun, Jiang, Can, Jiang, Juyong, Jin, Jiho, Jo, Ara, Jo, Younghyun, Jung, Hoyoun, Jung, Juyoung, Kang, Seunghyeong, Kim, Dae Hee, Kim, Ginam, Kim, Hangyeol, Kim, Heeseung, Kim, Hyojin, Kim, Hyojun, Kim, Hyun-Ah, Kim, Jeehye, Kim, Jin-Hwa, Kim, Jiseon, Kim, Jonghak, Kim, Jung Yoon, Kim, Rak Yeong, Kim, Seongjin, Kim, Seoyoon, Kim, Sewon, Kim, Sooyoung, Kim, Sukyoung, Kim, Taeyong, Ko, Naeun, Koo, Bonseung, Kwak, Heeyoung, Kwon, Haena, Kwon, Youngjin, Lee, Boram, Lee, Bruce W., Lee, Dagyeong, Lee, Erin, Lee, Euijin, Lee, Ha Gyeong, Lee, Hyojin, Lee, Hyunjeong, Lee, Jeeyoon, Lee, Jeonghyun, Lee, Jongheok, Lee, Joonhyung, Lee, Junhyuk, Lee, Mingu, Lee, Nayeon, Lee, Sangkyu, Lee, Se Young, Lee, Seulgi, Lee, Seung Jin, Lee, Suhyeon, Lee, Yeonjae, Lee, Yesol, Lee, Youngbeom, Lee, Yujin, Li, Shaodong, Liu, Tianyu, Moon, Seong-Eun, Moon, Taehong, Nihlenramstroem, Max-Lasse, Oh, Wonseok, Oh, Yuri, Park, Hongbeen, Park, Hyekyung, Park, Jaeho, Park, Nohil, Park, Sangjin, Ryu, Jiwon, Ryu, Miru, Ryu, Simo, Seo, Ahreum, Seo, Hee, Seo, Kangdeok, Shin, Jamin, Shin, Seungyoun, Sin, Heetae, Wang, Jiangping, Wang, Lei, Xiang, Ning, Xiao, Longxiang, Xu, Jing, Yi, Seonyeong, Yoo, Haanju, Yoo, Haneul, Yoo, Hwanhee, Yu, Liang, Yu, Youngjae, Yuan, Weijie, Zeng, Bo, Zhou, Qian, Cho, Kyunghyun, Ha, Jung-Woo, Park, Joonsuk, Hwang, Jihyun, Kwon, Hyoung Jo, Kwon, Soonyong, Lee, Jungyeon, Lee, Seungho, Lim, Seonghyeon, Noh, Hyunkyung, Choi, Seungho, Lee, Sang-Woo, Lim, Jung Hwa, Sung, Nako
We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code
Externí odkaz:
http://arxiv.org/abs/2404.01954
Autor:
Yang, June Yong, Kim, Byeongwook, Bae, Jeongin, Kwon, Beomseok, Park, Gunho, Yang, Eunho, Kwon, Se Jung, Lee, Dongsoo
Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models~(LLMs). However, the memory footprint of the KV cache poses a critical bottleneck in LLM deployment as th
Externí odkaz:
http://arxiv.org/abs/2402.18096
Autor:
Na, Byeonghu, Kim, Yeongmin, Bae, HeeSun, Lee, Jung Hyun, Kwon, Se Jung, Kang, Wanmo, Moon, Il-Chul
Conditional diffusion models have shown remarkable performance in various generative tasks, but training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels. This noise leads to condition mismatch an
Externí odkaz:
http://arxiv.org/abs/2402.17517
Autor:
Woo, Sunghyeon, Park, Baeseong, Kim, Byeongwook, Jo, Minjung, Kwon, Se Jung, Jeon, Dongsuk, Lee, Dongsoo
Large language models (LLMs) have achieved significant success across various domains. However, training these LLMs typically involves substantial memory and computational costs during both forward and backward propagation. While parameter-efficient
Externí odkaz:
http://arxiv.org/abs/2402.17812
Large Language Models (LLMs) have recently demonstrated remarkable success across various tasks. However, efficiently serving LLMs has been a challenge due to the large memory bottleneck, specifically in small batch inference settings (e.g. mobile de
Externí odkaz:
http://arxiv.org/abs/2309.15531
Post-training quantization (PTQ) has been gaining popularity for the deployment of deep neural networks on resource-limited devices since unlike quantization-aware training, neither a full training dataset nor end-to-end training is required at all.
Externí odkaz:
http://arxiv.org/abs/2306.00317
Autor:
Kim, Jeonghoon, Lee, Jung Hyun, Kim, Sungdong, Park, Joonsuk, Yoo, Kang Min, Kwon, Se Jung, Lee, Dongsoo
Large language models (LLMs) face the challenges in fine-tuning and deployment due to their high memory demands and computational costs. While parameter-efficient fine-tuning (PEFT) methods aim to reduce the memory usage of the optimizer state during
Externí odkaz:
http://arxiv.org/abs/2305.14152
The proposed method, Discriminator Guidance, aims to improve sample generation of pre-trained diffusion models. The approach introduces a discriminator that gives explicit supervision to a denoising sample path whether it is realistic or not. Unlike
Externí odkaz:
http://arxiv.org/abs/2211.17091