Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Kwon, Hyunwoo"'
Autor:
Dong, Hongjie, Kwon, Hyunwoo
We consider nonstationary Stokes equations in nondivergence form with variable viscosity coefficients and Navier slip boundary conditions with slip coefficient $\alpha$ in a domain $\Omega$. On the one hand, if $\alpha$ is sufficiently smooth, then w
Externí odkaz:
http://arxiv.org/abs/2408.17321
Autor:
Huang, Wenrui, Kwon, Hyunwoo
We consider an asymptotic behavior of solutions to the Vlasov-Riesz system of order $\alpha$ in $\mathbb{R}^3$ which is a kinetic model induced by Riesz interactions. We prove small data scattering when $1/2<\alpha<1$ and modified scattering when $1<
Externí odkaz:
http://arxiv.org/abs/2407.16919
In this paper, we investigate a Stokes-Magneto system with fractional diffusions. We first deal with the non-resistive case in $\mathbb{T}^{d}$ and establish the local and global well-posedness with initial magnetic field $\mathbf{b}_0\in H^{s}(\math
Externí odkaz:
http://arxiv.org/abs/2310.03255
Autor:
Dong, Hongjie, Kwon, Hyunwoo
We obtain weighted mixed norm Sobolev estimates in the whole space for nonstationary Stokes equations in divergence and nondivergence form with variable viscosity coefficients that are merely measurable in time variable and have small mean oscillatio
Externí odkaz:
http://arxiv.org/abs/2308.09220
Autor:
Kim, Hyunseok, Kwon, Hyunwoo
We consider a Stokes-Magneto system in $\mathbb{R}^d$ ($d\geq 2$) with fractional diffusions $\Lambda^{2\alpha}\boldsymbol{u}$ and $\Lambda^{2\beta}\boldsymbol{b}$ for the velocity $\boldsymbol{u}$ and the magnetic field $\boldsymbol{b}$, respectivel
Externí odkaz:
http://arxiv.org/abs/2302.02046
Publikováno v:
In Molecules and Cells April 2024 47(4)
Autor:
Kwon, Hyunwoo
We consider the Dirichlet problem for second-order linear elliptic equations in divergence form \begin{equation*} -\mathrm{div }(A\nabla u)+\mathbf{b} \cdot \nabla u+\lambda u=f+\mathrm{div } \mathbf{F}\quad \text{in } \Omega\quad\text{and}\quad u=0\
Externí odkaz:
http://arxiv.org/abs/2104.01300
Autor:
Kwon, Hyunwoo
We consider the following Dirichlet problems for elliptic equations with singular drift $\mathbf{b}$: \[ \text{(a) } -\operatorname{div}(A \nabla u)+\operatorname{div}(u\mathbf{b})=f,\quad \text{(b) } -\operatorname{div}(A^T \nabla v)-\mathbf{b} \cdo
Externí odkaz:
http://arxiv.org/abs/2011.07524
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kim, Hyunseok, Kwon, Hyunwoo
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: \[ -\triangle u +\mathrm{div}(u\mathbf{b}) =f \quad\text{ and }\quad -\triangle v -\mathbf{b} \cdot \nabla v =g \] in a bounded Lipschitz domain $\Omega$ in $\
Externí odkaz:
http://arxiv.org/abs/1811.12619