Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Kwasniewski B"'
Autor:
Bardadyn, K., Kwaśniewski, B. K.
We generalize the well known $C^*$-algebraic result of Kawamura-Tomiyama and Archbold-Spielberg for crossed products of discrete transformation groups to the realm of Banach algebras and twisted actions. Namely we show that topological freeneess is e
Externí odkaz:
http://arxiv.org/abs/2307.01685
Our initial data is a transfer operator $L$ for a continuous, countable-to-one map $\varphi:\Delta \to X$ defined on an open subset of a locally compact Hausdorff space $X$. Then $L$ may be identified with a `potential', i.e. a map $\varrho:\Delta\to
Externí odkaz:
http://arxiv.org/abs/2202.03802
Autor:
Kwaśniewski, B. K., Meyer, R.
Publikováno v:
J. Noncommut. Geom. 17 (2023), p. 999-1043
Let $A\subseteq B$ be a $C^*$-inclusion. We give efficient conditions under which $A$ separates ideals in $B$, and $B$ is purely infinite if every positive element in $A$ is properly infinite in $B$. We specialise to the case when $B$ is a crossed pr
Externí odkaz:
http://arxiv.org/abs/2112.07420
Autor:
Bardadyn, K., Kwaśniewski, B.
We study the spectrum of operators $aT\in B(H)$ on a Hilbert space $H$ where $T$ is an isometry and $a$ belongs to a commutative $C^*$-subalgebra $C(X)\cong A\subseteq B(H)$ such that the formula $L(a)=T^*aT$ defines a faithful transfer operator on $
Externí odkaz:
http://arxiv.org/abs/1911.04811
Autor:
Kwasniewski, B. K., Meyer, R.
Publikováno v:
Trans. Amer. Math. Soc. 373 (2020), p. 8697-8724
We characterise Exel's noncommutative Cartan subalgebras in several ways using uniqueness of conditional expectations, relative commutants, or purely outer inverse semigroup actions. We describe in which sense the crossed product decomposition for a
Externí odkaz:
http://arxiv.org/abs/1908.07217
Autor:
Kwasniewski, B. K., Meyer, R.
Publikováno v:
Doc. Math. 26 (2021), 271-335
We study simplicity and pure infiniteness criteria for C*-algebras associated to inverse semigroup actions by Hilbert bimodules and to Fell bundles over etale not necessarily Hausdorff groupoids. Inspired by recent work of Exel and Pitts, we introduc
Externí odkaz:
http://arxiv.org/abs/1906.06202
Autor:
Kwasniewski, B. K., Lebedev, A. V.
We give formulas for the spectral radius of weighted endomorphisms $a\alpha: C(X,D)\to C(X,D)$, $a\in C(X,D)$, where $X$ is a compact Hausdorff space and $D$ is a unital Banach algebra. Under the assumption that $\alpha$ generates a partial dynamical
Externí odkaz:
http://arxiv.org/abs/1812.04267
Autor:
Kwaśniewski, B. K., Meyer, R.
Publikováno v:
Proc. London Math. Soc. 121 (2020), no. 4, 788-827
Let $A$ and $B$ be $C^*$-algebras with $A\subseteq M(B)$. Exploiting the duality between sober spaces and spatial locales, and the adjunction between restriction and induction for ideals in $A$ and $B$, we identify conditions that allow to define a q
Externí odkaz:
http://arxiv.org/abs/1804.09387
Publikováno v:
Math. Anal. Appl. 473 (2019), 749-785
We study conditions that ensure uniqueness theorems of Cuntz-Krieger type for relative Cuntz-Pimsner algebras $\mathcal{O}(J,X)$ associated to a $C^*$-correspondence $X$ over a $C^*$-algebra $A$. We give general sufficient conditions phrased in terms
Externí odkaz:
http://arxiv.org/abs/1801.03142
Autor:
Kwaśniewski, B. K., Szymański, W.
Publikováno v:
J. Math. Anal. Appl. 445 (2017), no. 1, 898-943
We investigate structural properties of the reduced cross-sectional algebra $C^*_r(\mathcal{B})$ of a Fell bundle $\mathcal{B}$ over a discrete group $G$. Conditions allowing one to determine the ideal structure of $C^*_r(\mathcal{B})$ are studied. N
Externí odkaz:
http://arxiv.org/abs/1505.05202