Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Kvamme, Sondre"'
Autor:
Kvamme, Sondre
This manuscript was written for the Proceedings of the ICRA 2022 in Buenos Aires. It can be divided into four parts: The first part is an introduction to the theory of monomorphism categories, including a short survey on some representation theoretic
Externí odkaz:
http://arxiv.org/abs/2407.17147
We investigate the (separated) monomorphism category $\operatorname{mono}(Q,\Lambda)$ of a quiver $Q$ over an Artin algebra $\Lambda$. We construct an epivalence from $\overline{\operatorname{mono}}(Q,\Lambda)$ to $\operatorname{rep}(Q,\overline{\ope
Externí odkaz:
http://arxiv.org/abs/2303.07753
Autor:
August, Jenny, Haugland, Johanne, Jacobsen, Karin M., Kvamme, Sondre, Palu, Yann, Treffinger, Hipolito
Let $\mathcal{A}$ be an abelian length category containing a $d$-cluster tilting subcategory $\mathcal{M}$. We prove that a subcategory of $\mathcal{M}$ is a $d$-torsion class if and only if it is closed under $d$-extensions and $d$-quotients. This g
Externí odkaz:
http://arxiv.org/abs/2301.10463
$n\mathbb{Z}$-cluster tilting subcategories are an ideal setting for higher dimensional Auslander-Reiten theory. We give a complete classification of $n\mathbb{Z}$-cluster tilting subcategories of module categories of Nakayama algebras. In particular
Externí odkaz:
http://arxiv.org/abs/2208.13257
Publikováno v:
Rev. Mat. Iberoam. 39 (2023), no. 2, 439-494
Quasi-abelian categories are abundant in functional analysis and representation theory. It is known that a quasi-abelian category $\mathcal{E}$ is a cotilting torsionfree class of an abelian category. In fact, this property characterizes quasi-abelia
Externí odkaz:
http://arxiv.org/abs/2105.11483
Publikováno v:
Advances in Mathematics 401 (2022): 108296
The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\operatorname{mod_{\mathsf{adm}}}(\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslan
Externí odkaz:
http://arxiv.org/abs/2011.15107
Autor:
Kvamme, Sondre
We investigate how to characterize subcategories of abelian categories in terms of intrinsic axioms. In particular, we find intrinsic axioms which characterize generating cogenerating functorially finite subcategories, precluster tilting subcategorie
Externí odkaz:
http://arxiv.org/abs/2006.07715
We introduce a very general extension of the monomorphism category as studied by Ringel and Schmidmeier which in particular covers generalised species over locally bounded quivers. We prove that analogues of the kernel and cokernel functor send almos
Externí odkaz:
http://arxiv.org/abs/1907.04657
Autor:
Kvamme, Sondre
Publikováno v:
Math. Z. 297, 803-825 (2021)
For an exact category $\mathcal{E}$ with enough projectives and with a $d\mathbb{Z}$-cluster tilting subcategory, we show that the singularity category of $\mathcal{E}$ admits a $d\mathbb{Z}$-cluster tilting subcategory. To do this we introduce clust
Externí odkaz:
http://arxiv.org/abs/1808.03511
Autor:
Kvamme, Sondre, Marczinzik, Rene
We review the theory of Co-Gorenstein algebras, which was introduced by Beligiannis in the article "The Homological Theory of Contravariantly Finite Subcategories: Gorenstein Categories, Auslander-Buchweitz Contexts and (Co-)Stabilization". We show a
Externí odkaz:
http://arxiv.org/abs/1805.00274