Zobrazeno 1 - 10
of 321 393
pro vyhledávání: '"Kuznetsov, An"'
Autor:
Jibladze, Mamuka, Kuznetsov, Evgeny
An embedding of arbitrary Heyting algebra H into a reduct from the variety of Kuznetsov-Muravitsky algebras is constructed. An algebraic proof is given that this reduct belongs to the variety of Heyting algebras generated by H.
Externí odkaz:
http://arxiv.org/abs/2405.13802
For the 2D cubic (mass-critical) Zakharov-Kuznetsov equation, \begin{equation*} \partial_t\phi+\partial_{x_1}(\Delta \phi+\phi^3)=0,\quad (t,x)\in [0,\infty)\times \mathbb{R}^{2}, \end{equation*} we prove that there exist no finite/infinite time blow
Externí odkaz:
http://arxiv.org/abs/2412.02131
The $\mathcal{C}^{\infty}$-structure-based method of integration of distributions of vector fields is used to classify all the traveling wave solutions of the modified Zakharov--Kuznetsov equation. This work unifies and generalizes the particular res
Externí odkaz:
http://arxiv.org/abs/2411.14024
Autor:
Li, Zhaolin
In this paper, we will prove a Poisson summation formula on the Kuznetsov quotient that will be responsible for the functional equation of the standard $L$-functions of $\GL_2$.
Externí odkaz:
http://arxiv.org/abs/2410.15627
Autor:
Baldasso, Mikaela, Panthee, Mahendra
We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation \begin{equation} \begin{cases} \partial_{t}u+\partial_{x}\Delta u+\mu \partial_{x}u^{k+1}=0, \,\;\; (x, y) \in \mathbb{R}^2, \, t \in \mathbb{R},\\ u(
Externí odkaz:
http://arxiv.org/abs/2407.13074
Autor:
Lytle, Madison L., Charalampidis, Efstathios G., Mantzavinos, Dionyssios, Cuevas-Maraver, Jesus, Kevrekidis, Panayotis G., Karachalios, Nikos I.
In this work, we investigate the formation of time-periodic solutions with a non-zero background that emulate rogue waves, known as Kuzentsov-Ma (KM) breathers, in physically relevant lattice nonlinear dynamical systems. Starting from the completely
Externí odkaz:
http://arxiv.org/abs/2412.10551
Autor:
Shan, Minjie
In this paper, we discuss pointwise decay estimate for the solution to the mass-critical generalized Korteweg-de Vries (gKdV) equation with initial data $u_0\in H^{1/2}(\mathbb{R})$. It is showed that nonlinear solution enjoys the same decay rate as
Externí odkaz:
http://arxiv.org/abs/2409.05550
We study the categorical Torelli theorem for smooth (weighted) hypersurfaces in (weighted) projective spaces via the Hochschild--Serre algebra of its Kuznetsov component. In the first part of the paper, we show that a natural graded subalgebra of the
Externí odkaz:
http://arxiv.org/abs/2408.08266
The influence of fractional order parameter $(\alpha)$ in nonlinear waves is examined in the fractional Zakharov-Kuznetsov (FZK) equation with the Hirota bilinear approach. Symbolic computation is used for all mathematical calculations. A significant
Externí odkaz:
http://arxiv.org/abs/2409.18993
Autor:
Ban, Yingzhe, Shan, Minjie
We illustrate the dispersive blow up phenomena of the solutions of three dimensional generalized Zakharov-Kuznetsov equations. In particular, we construct smooth initial data such that, the associated global solutions fail to be $C^{1}$ at time $t$ i
Externí odkaz:
http://arxiv.org/abs/2408.14737