Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Kusner, Wöden"'
Chiral objects rotate when placed in a collimated flow or wind. We exploit this hydrodynamic intuition to construct a tensorial chirality measure for rigid filaments and curves. This tensor is trace-free, so if a curve has a right-handed twist about
Externí odkaz:
http://arxiv.org/abs/2004.10338
Autor:
Kusner, Rob, Kusner, Wöden
Publikováno v:
Geometriae Dedicata 2023
We construct a pair of isotopic link configurations that are not thick isotopic while preserving total length.
Comment: 2 pages, 1 figure
Comment: 2 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/1908.05610
Publikováno v:
Monatshefte f\"ur Mathematik 2020
The concept of hyperuniformity has been introduced by Torquato and Stillinger in 2003 as a notion to detect structural behaviour intermediate between amorphous disorder and crystalline order. The present paper studies a generalisation of this concept
Externí odkaz:
http://arxiv.org/abs/1809.02645
Publikováno v:
Constructive Approximation 2019
We study a generalisation of the concept of hyperuniformity to spheres of arbitrary dimension. It is shown that QMC-designs (and especially spherical designs) are hyperuniform in our sense.
Externí odkaz:
http://arxiv.org/abs/1709.02613
Publikováno v:
pp. 219--277 in: G. Ambrus, I. Barany, K. J. Boroczky, G. Fejes-Toth, J. Pach (Eds.) New Trends in Intuitive Geometry, Bolyai Society Mathematical Studies No. 27, Springer-Verlag GMBH, Germany 2018
The problem of twelve spheres is to understand, as a function of $r \in (0,r_{max}(12)]$, the configuration space of $12$ non-overlapping equal spheres of radius $r$ touching a central unit sphere. It considers to what extent, and in what fashion, to
Externí odkaz:
http://arxiv.org/abs/1611.10297
Autor:
Hales, Thomas, Kusner, Wöden
We show that every packing of congruent regular pentagons in the Euclidean plane has density at most $(5-\sqrt5)/3$, which is about 0.92. More specifically, this article proves the pentagonal ice-ray conjecture of Henley (1986), and Kuperberg and Kup
Externí odkaz:
http://arxiv.org/abs/1602.07220
Autor:
Kallus, Yoav, Kusner, Wöden
Publikováno v:
Discrete & Computational Geometry 56:2, 449-471 (2016)
This paper introduces a technique for proving the local optimality of packing configurations. Applying this technique to a general convex polygon, we prove that the construction of the optimal double lattice packing by Kuperberg and Kuperberg is also
Externí odkaz:
http://arxiv.org/abs/1509.02241
Autor:
Kusner, Wöden
Publikováno v:
Discrete & Computational Geometry, 55:3, 638-641 (2016)
Using transversality and a dimension reduction argument, a result of A. Bezdek and W. Kuperberg is applied to polycylinders $\mathbb{D}^2\times \mathbb{R}^n$, showing that the optimal packing density is $\pi/\sqrt{12}$ in any dimension.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/1405.0497
Autor:
Kusner, Wöden
Publikováno v:
Discrete & Computational Geometry, 52:4, 964-978 (2014)
In the early 1990s, A. Bezdek and W. Kuperberg used a relatively simple argument to show a surprising result: The maximum packing density of circular cylinders of infinite length in $\mathbb{R}^3$ is exactly $\pi/\sqrt{12}$, the planar packing densit
Externí odkaz:
http://arxiv.org/abs/1309.6996
Autor:
Kusner, Rob, Kusner, Wöden
Publikováno v:
Geometriae Dedicata. 217
We construct a pair of isotopic link configurations that are not thick isotopic while preserving total length.
2 pages, 1 figure
2 pages, 1 figure