Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Kurinczuk, Robert"'
We state a conjecture, local Langlands in families, connecting the centre of the category of smooth representations on $\mathbb{Z}[\sqrt{q}^{-1}]$-modules of a quasi-split $p$-adic group $\mathrm{G}$ (where $q$ is the cardinality of the residue field
Externí odkaz:
http://arxiv.org/abs/2406.09283
Autor:
Kurinczuk, Robert, Matringe, Nadir
Publikováno v:
Comptes Rendus. Mathématique, Vol 358, Iss 2, Pp 201-209 (2020)
Let $F$ be a non archimedean local field of residual characteristic $p$ and $\ell $ a prime number different from $p$. Let $\mathrm{V}$ denote Vignéras’ $\ell $-modular local Langlands correspondence [7], between irreducible $\ell $-modular repres
Externí odkaz:
https://doaj.org/article/411cbc6c68664704926f76712d95fde9
For an inner form $\mathrm{G}$ of a general linear group or classical group over a non-archimedean local field of odd residue characteristic, we decompose the category of smooth representations on $\mathbb{Z}[\mu_{p^{\infty}},1/p]$-modules by endo-pa
Externí odkaz:
http://arxiv.org/abs/2405.13713
Let $F/F_0$ be a quadratic extension of non-Archimedean locally compact fields of residual characteristic $p\neq2$ with Galois automorphism $\sigma$, and let $R$ be an algebraically closed field of characteristic $\ell\notin\{0,p\}$. We reduce the cl
Externí odkaz:
http://arxiv.org/abs/2310.15820
Let $G$ be a reductive group over a non-archimedean local field $F$ of residue characteristic $p$. We prove that the Hecke algebras of $G(F)$ with coefficients in a ${\mathbb Z}_{\ell}$-algebra $R$ for $\ell$ not equal to $p$ are finitely generated m
Externí odkaz:
http://arxiv.org/abs/2203.04929
Let $F$ be a nonarchimedean local field of residue characteristic $p$, let $\hat{G}$ be a split reductive group over $\mathbb{Z}[1/p]$ with an action of $W_F$, and let $^LG$ denote the semidirect product $\hat{G}\rtimes W_F$. We construct a moduli sp
Externí odkaz:
http://arxiv.org/abs/2009.06708
Autor:
Kurinczuk, Robert, Matringe, Nadir
Let $F$ be a non archimedean local field of residual characteristic $p$ and $\ell$ a prime number different from $p$. Let $\mathrm{V}$ denote Vign\'eras' $\ell$-modular local Langlands correspondence between irreducible $\ell$-modular representations
Externí odkaz:
http://arxiv.org/abs/1911.12891
Autor:
Kurinczuk, Robert, Matringe, Nadir
Let $E/F$ be a quadratic extension of non-archimedean local fields, and let $\ell$ be a prime number different from the residual characteristic of $F$. For a complex cuspidal representation $\pi$ of $GL(n,E)$, the Asai $L$-factor $L^+(X,\pi)$ has a p
Externí odkaz:
http://arxiv.org/abs/1903.02427
Autor:
Anandavardhanan, U. K., Kurinczuk, Robert, Matringe, Nadir, Sécherre, Vincent, Stevens, Shaun
Let $F/F_{\mathsf{o}}$ be a quadratic extension of non-archimedean locally compact fields of odd residual characteristic and $\sigma$ be its non-trivial automorphism. We show that any $\sigma$-self-dual cuspidal representation of ${\rm GL}_n(F)$ cont
Externí odkaz:
http://arxiv.org/abs/1807.07755
Autor:
Kurinczuk, Robert, Matringe, Nadir
Let $F$ be a non-archimedean local field of residual characteristic $p$, $\ell\neq p$ be a prime number, and $\mathrm{W}_F$ the Weil group of $F$. We classify the indecomposable $\mathrm{W}_F$-semisimple Deligne $\overline{\mathbb{F}_\ell}$-represent
Externí odkaz:
http://arxiv.org/abs/1805.05888