Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Kurilić, Miloš S."'
Autor:
Janjoš, Aleksandar, Kurilić, Miloš S.
Topologies $\tau , \sigma \in \mathop{{\mathrm{Top}}}\nolimits _X$ are bijectively related, in notation $\tau \sim \sigma$, if there are continuous bijections $f: (X, \tau )\rightarrow (X, \sigma )$ and $g: (X, \sigma)\rightarrow (X, \tau)$. Defining
Externí odkaz:
http://arxiv.org/abs/2412.08319
Autor:
Kurilić, Miloš S.
A topological space ${\mathcal X}$ is reversible iff each continuous bijection (condensation) $f: {\mathcal X} \rightarrow {\mathcal X}$ is a homeomorphism; weakly reversible iff whenever ${\mathcal Y}$ is a space and there are condensations $f:{\mat
Externí odkaz:
http://arxiv.org/abs/2412.07705
Autor:
Kurilić, Miloš S., Kuzeljević, Boriša
Publikováno v:
Comptes Rendus. Mathématique, Vol 358, Iss 7, Pp 791-796 (2020)
A family of infinite subsets of a countable set $X$ is called positive iff it is closed under supersets and finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure ${\mathbb{X}}$ has the strong am
Externí odkaz:
https://doaj.org/article/ccb966a9fe8b468aaa74c562791fec72
Autor:
Kurilić, Miloš S.
$\mathop{\rm rp}\nolimits ({\mathbb B})$ denotes the reduced power ${\mathbb B}^\omega /\Phi$ of a Boolean algebra ${\mathbb B}$, where $\Phi$ is the Fr\'{e}chet filter $\Phi$ on $\omega$. We investigate iterated reduced powers ($\mathop{\rm rp}\noli
Externí odkaz:
http://arxiv.org/abs/2403.17930
Autor:
Kurilić, Miloš S.
The poset of copies of a relational structure ${\mathbb X}$ is the partial order $\langle {\mathbb P} ({\mathbb X}) ,\subset \rangle$, where ${\mathbb P} ({\mathbb X})=\{ Y\subset X: {\mathbb Y} \cong {\mathbb X}\}$. Investigating the classification
Externí odkaz:
http://arxiv.org/abs/2401.00550
Autor:
Kurilić, Miloš S.
For a relational structure ${\mathbb X}$ we investigate the partial order $\langle {\mathbb P} ({\mathbb X}) ,\subset \rangle$, where ${\mathbb P} ({\mathbb X}):=\{ f[X]: f\in \mathop{\rm Emb}\nolimits ({\mathbb X})\}$. Here we consider uncountable o
Externí odkaz:
http://arxiv.org/abs/2401.00302
Autor:
Kurilić, Miloš S., Todorčević, Stevo
The poset of copies of a relational structure ${\mathbb X}$ is the partial order ${\mathbb P} ({\mathbb X} ) := \langle \{ Y \subset X: {\mathbb Y} \cong {\mathbb X}\}, \subset \rangle$ and each similarity of such posets (e.g. isomorphism, forcing eq
Externí odkaz:
http://arxiv.org/abs/2310.09860
Autor:
Kurilić, Miloš S.
A tree ${\mathbb T} =\langle T\leq \rangle$ is reversible iff there is no order $\preccurlyeq \;\varsubsetneq \;\leq $ such that ${\mathbb T} \cong \langle T ,\preccurlyeq\rangle$. Using a characterization of reversibility via back and forth systems
Externí odkaz:
http://arxiv.org/abs/2306.16370
Autor:
Kurilić, Miloš S.
If $L$ is a relational language, then an $L$-structure ${\mathbb X}=\langle X,\bar \rho \rangle$ is reversible iff there is no interpretation $\bar \sigma \varsubsetneq \bar \rho$ such that the structures $\langle X,\bar \sigma \rangle$ and $\langle
Externí odkaz:
http://arxiv.org/abs/2306.13966
Autor:
Kurilić, Miloš S.
Matatyahu Rubin has shown that a sharp version of Vaught's conjecture, $I({\mathcal T},\omega )\in \{ 0,1,{\mathfrak{c}}\}$, holds for each complete theory of linear order ${\mathcal T}$. We show that the same is true for each complete theory of part
Externí odkaz:
http://arxiv.org/abs/2212.13947