Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Kupriyanov, Vladislav"'
We consider a semi-classical approximation to the dynamics of a point particle in a noncommutative space. In this approximation, the noncommutativity of space coordinates is described by a Poisson bracket. For linear Poisson brackets, the correspondi
Externí odkaz:
http://arxiv.org/abs/2405.09348
We explicitly construct an L$_\infty$ algebra that defines U$_{\star}(1)$ gauge transformations on a space with an arbitrary non-commutative and even non-associative star product. Matter fields are naturally incorporated in this scheme as L$_\infty$
Externí odkaz:
http://arxiv.org/abs/2309.15323
We develop a geometric approach to Poisson electrodynamics, that is, the semi-classical limit of noncommutative $U(1)$ gauge theory. Our framework is based on an integrating symplectic groupoid for the underlying Poisson brackets, which we interpret
Externí odkaz:
http://arxiv.org/abs/2308.07406
We give a conceptual treatment of the Seiberg-Witten map as a quasi-isomorphism of $A_\infty$-algebras.
Comment: 17 pages, v.2 - references added
Comment: 17 pages, v.2 - references added
Externí odkaz:
http://arxiv.org/abs/2302.07175
Autor:
Kupriyanov, Vladislav G.
Publikováno v:
JHEP09(2021)016
The Poisson gauge algebra is a semi-classical limit of complete non-commutative gauge algebra. In the present work we formulate the Poisson gauge theory which is a dynamical field theoretical model having the Poisson gauge algebra as a corresponding
Externí odkaz:
http://arxiv.org/abs/2105.14965
Publikováno v:
J. Phys. A: Math. Theor. 55 (2022) 035201
We formulate general definitions of semi-classical gauge transformations for noncommutative gauge theories in general backgrounds of string theory, and give novel explicit constructions using techniques based on symplectic embeddings of almost Poisso
Externí odkaz:
http://arxiv.org/abs/2101.12618
Publikováno v:
JHEP08(2020)041
We propose a field theoretical model defined on non-commutative space-time with non-constant non-commutativity parameter $\Theta(x)$, which satisfies two main requirements: it is gauge invariant and reproduces in the commutative limit, $\Theta\to 0$,
Externí odkaz:
http://arxiv.org/abs/2004.14901
Autor:
Kupriyanov, Vladislav G.
The problem of the consistent definition of gauge theories living on the non-commutative (NC) spaces with a non-constant NC parameter $\Theta(x)$ is discussed. Working in the L$_\infty$ formalism we specify the undeformed theory, $3$d abelian Chern-S
Externí odkaz:
http://arxiv.org/abs/1905.08753
Autor:
Kupriyanov, Vladislav G.
A consistent description of gauge theories on coordinate dependent non-commutative (NC) space-time is a long-standing problem with a number of solutions, none of which is free from criticism. In this work, we discuss the approach proposed in arXiv:18
Externí odkaz:
http://arxiv.org/abs/1903.02867
Publikováno v:
J.Math.Phys. 59 (2018) no.12, 123505
In the context of the recently proposed L$_\infty$ bootstrap approach, the question arises whether the so constructed gauge theories are unique solutions of the L$_\infty$ relations. Physically it is expected that two gauge theories should be conside
Externí odkaz:
http://arxiv.org/abs/1806.10314