Zobrazeno 1 - 10
of 457
pro vyhledávání: '"Kung–Traub conjecture"'
Autor:
Ahmad, Fayyaz1,2 fayyaz.ahmad@upc.edu
Publikováno v:
Algorithms. 2016, Vol. 9 Issue 2, p30. 11p.
Autor:
Fayyaz Ahmad
Publikováno v:
Algorithms, Vol 9, Iss 2, p 30 (2016)
Kung-Traub conjecture states that an iterative method without memory for finding the simple zero of a scalar equation could achieve convergence order 2 d − 1 , and d is the total number of function evaluations. In an article “Babajee, D.K.R. On t
Externí odkaz:
https://doaj.org/article/2d6dbbbdd87344b9bcddc37cc844335b
Autor:
Rajiv Babajee, Diyashvir Kreetee1 dkrbabajee@gmail.com
Publikováno v:
Algorithms. 2016, Vol. 9 Issue 1, p1. 16p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rani, Litika, Kansal, Munish
Publikováno v:
Engineering Computations, 2022, Vol. 39, Issue 6, pp. 2367-2390.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EC-08-2021-0449
Publikováno v:
Engineering Computations, 2021, Vol. 39, Issue 3, pp. 965-992.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EC-03-2021-0155
Autor:
Behl, Ramandeep1 (AUTHOR) rlal@kau.edu.sa
Publikováno v:
Mathematics (2227-7390). May2022, Vol. 10 Issue 9, p1372-1372. 17p.
Autor:
Zein, Ali1 (AUTHOR) alizein@ppu.edu, Lin, Chong1 (AUTHOR) linchong_2004@hotmail.com
Publikováno v:
Journal of Applied Mathematics. 10/4/2024, Vol. 2024, p1-22. 22p.
Autor:
Abdullah, Shahid1 (AUTHOR) neha.choubey@vitbhopal.ac.in, Choubey, Neha1 (AUTHOR) suresh.dara@vitbhopal.ac.in, Dara, Suresh1 (AUTHOR), Junjua, Moin-ud-Din2 (AUTHOR) shahid.abdullah2021@vitbhopal.ac.in, Abdullah, Tawseef3 (AUTHOR) tawseef_2022phamec019@nitsri.ac.in
Publikováno v:
Axioms (2075-1680). Oct2024, Vol. 13 Issue 10, p675. 22p.
Autor:
D. K. R. Babajee
Publikováno v:
Algorithms; Volume 9; Issue 1; Pages: 1
Kung-Traub’s conjecture states that an optimal iterative method based on d function evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence order of 2 d−1. During the last years, many attempts have been m