Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Kung, Joseph"'
Autor:
Moore-Palhares, Daniel, Saifuddin, Murtuza, Dasgupta, Archya, Anzola Pena, Maria Lourdes, Prasla, Shopnil, Ho, Ling, Lu, Lin, Kung, Joseph, Karam, Irene, Poon, Ian, Bayley, Andrew, McNabb, Evan, Stanisz, Greg, Kolios, Michael, Czarnota, Gregory J.
Publikováno v:
In Radiotherapy and Oncology September 2024 198
Autor:
Kung, Joseph P. S.
The Merino-Welsh conjectures say that subject to conditions, there is an inequality among the Tutte-polynomial evaluations $T(M;2,0)$, $T(M;0,2)$, and $T(M;1,1)$. We present three results on a Merino-Welsh conjecture. These results are "inconsequenti
Externí odkaz:
http://arxiv.org/abs/2105.01825
Autor:
Kung, Joseph P. S.
Specializing the $\gamma$-basis for the vector space $\mathcal{G}(n,r)$ spanned by the set of symbols on bit sequences with $r$ $1$'s and $n-r$ $0$'s, we obtain a frame or spanning set for the vector space $\mathcal{T}(n,r)$ spanned by Tutte polynomi
Externí odkaz:
http://arxiv.org/abs/2104.04018
Autor:
Falk, Michael J., Kung, Joseph P. S.
This is a chapter destined for the book "Handbook of the Tutte Polynomial". The chapter is a composite. The first part is a brief introduction to Orlik-Solomon algebras. The second part sketches the theory of evaluative functions on matroid base poly
Externí odkaz:
http://arxiv.org/abs/1711.08816
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bonin, Joseph E., Kung, Joseph P. S.
Publikováno v:
Advances in Applied Mathematics, 2018
The catenary data of a matroid $M$ of rank $r$ on $n$ elements is the vector $(\nu(M;a_0,a_1,\ldots,a_r))$, indexed by compositions $(a_0,a_1,\ldots,a_r)$, where $a_0 \geq 0$,\, $a_i > 0$ for $i \geq 1$, and $a_0+ a_1 + \cdots + a_r = n$, with the co
Externí odkaz:
http://arxiv.org/abs/1510.00682
Autor:
Kung, Joseph
We give a generating set for linear relations on Tutte polynomials of rank-$r$ size-$n$ freedom matroids.
Externí odkaz:
http://arxiv.org/abs/1509.02117
We prove that the maximum size of a simple binary matroid of rank $r \geq 5$ with no AG(3,2)-minor is $\binom{r+1}{2}$ and characterise those matroids achieving this bound. When $r \geq 6$, the graphic matroid $M(K_{r+1})$ is the unique matroid meeti
Externí odkaz:
http://arxiv.org/abs/1304.2448