Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Kunal Lillaney"'
Publikováno v:
KDD
We present methods to serialize and deserialize gradient-boosted trees and random forests that optimize inference latency when models are not loaded into memory. This arises when models are larger than memory, but also systematically when models are
Autor:
George S. Plummer, Isaac H. Bianco, Andrew Champion, Arthur W. Wetzel, David G. C. Hildebrand, Joshua T. Vogelstein, Marcelo Cicconet, Russel Torres, Alexander F. Schier, Owen Randlett, Randal Burns, Jeff W. Lichtman, Wei-Chung Allen Lee, Won-Ki Jeong, Stephan Saalfeld, Alexander D. Baden, Jungmin Moon, Florian Engert, Tran Minh Quan, Ruben Portugues, Woohyuk Choi, Kunal Lillaney, Brett J. Graham
Publikováno v:
Nature. 545:345-349
Investigating the dense meshwork of wires and synapses that form neuronal circuits is possible with the high resolution of serial-section electron microscopy (ssEM)1. However, the imaging scale required to comprehensively reconstruct axons and dendri
Publikováno v:
SoCC
Object storage is a low-cost, scalable component of cloud ecosystems. However, interface incompatibilities and performance limitations inhibit its adoption for emerging cloud-based workloads. Users are compelled to either run their applications over
Autor:
Brock A. Wester, Matthew Wright, Karl Deisseroth, Forrest Collman, Timothy Gion, Joshua T. Vogelstein, Derek Pryor, Kunal Lillaney, Benjamin Falk, Mark A. Chevillet, Jordan Matelsky, R. Jacob Vogelstein, Eric T. Trautman, Randal Burns, Ailey K. Crow, Michael Kazhdan, Sharmishtaa Seshamani, Jesse L. Patsolic, Alex Baden, Daniel J. Tward, Khaled Khairy, Robert C. Hider, Michael I. Miller, Brian Hsueh, Eric Perlman, Eric W. Bridgeford, Dean M. Kleissas, Vikram Chandrashekhar, Stephen J. Smith, William Gray Roncal, Priya Manavalan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64a0dddc0b61627a675e70a146e4a5a0
https://europepmc.org/articles/PMC6481161/
https://europepmc.org/articles/PMC6481161/
Autor:
Joshua T. Vogelstein, Randal Burns, Eric Perlman, William Gray Roncal, Dean M. Kleissas, Alexander Eusman, Kunal Lillaney
Publikováno v:
eScience
We describe NDStore, a scalable multi-hierarchical data storage deployment for spatial analysis of neuroscience data on the AWS cloud. The system design is inspired by the requirement to maintain high I/O throughput for workloads that build neural co
Autor:
Joshua T. Vogelstein, Michael I. Miller, Kwame S. Kutten, Alexander D. Baden, J. Tilak Ratnanather, Karl Deisseroth, Li Ye, Jordan Matelsky, Kunal Lillaney, Nicolas Charon
Publikováno v:
Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 ISBN: 9783319661810
MICCAI (1)
MICCAI (1)
CLARITY is a method for converting biological tissues into translucent and porous hydrogel-tissue hybrids. This facilitates interrogation with light sheet microscopy and penetration of molecular probes while avoiding physical slicing. In this work, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9c710b26dcd4439c57b74354c2a0098a
https://doi.org/10.1007/978-3-319-66182-7_32
https://doi.org/10.1007/978-3-319-66182-7_32
Autor:
Narayanan Kasthuri, Nicholas C. Weiler, Alexander S. Szalay, Joshua T. Vogelstein, Kwanghun Chung, Eric Perlman, R. Jacob Vogelstein, Davi D. Bock, Michael Kazhdan, Logan Grosenick, Randal Burns, Dean M. Kleissas, Jeff W. Lichtman, Karl Deisseroth, Priya Manavalan, Daniel R. Berger, Kunal Lillaney, R. Clay Reid, William Gray Roncal, Stephen J. Smith
Publikováno v:
SSDBM
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed pri