Zobrazeno 1 - 10
of 178
pro vyhledávání: '"Kumar, Vishvesh"'
Autor:
Chatzakou, Marianna, Kumar, Vishvesh
Publikováno v:
Comptes Rendus. Mathématique, Vol 360, Iss G4, Pp 343-347 (2022)
In this note we study the $L^p-L^q$ boundedness of Fourier multipliers of anharmonic oscillators, and as a consequence also of spectral multipliers, for the range $1
Externí odkaz:
https://doaj.org/article/5d01b6195dbc4d75b623a09437183869
In this article, we establish three fundamental Fourier inequalities: the Hausdorff-Young inequality, the Paley inequality, and the Hausdorff-Young-Paley inequality for $(l, n)$-type functions on $\mathrm{SL}(2,\mathbb{R})$. Utilizing these inequalit
Externí odkaz:
http://arxiv.org/abs/2409.17918
In this paper, we investigate the subelliptic nonlocal Brezis-Nirenberg problem on stratified Lie groups involving critical nonlinearities, namely, \begin{align*} (-\Delta_{\mathbb{G}, p})^s u&= \mu |u|^{p_s^*-2}u+\lambda h(x, u) \quad \text{in}\quad
Externí odkaz:
http://arxiv.org/abs/2409.03867
Let $\mathbb G$ be a graded Lie group with homogeneous dimension $Q$. In this paper, we study the Cauchy problem for a semilinear hypoelliptic damped wave equation involving a positive Rockland operator $\mathcal{R}$ of homogeneous degree $\nu\geq 2$
Externí odkaz:
http://arxiv.org/abs/2408.05598
Let $\mathbb G$ be a graded Lie group with homogeneous dimension $Q$. In this paper, we study the Cauchy problem for a semilinear hypoelliptic damped wave equation involving a positive Rockland operator $\mathcal{R}$ of homogeneous degree $\nu\geq 2$
Externí odkaz:
http://arxiv.org/abs/2404.08766
In this work, we introduce a global theory of subelliptic pseudo-differential operators on arbitrary homogeneous vector bundles over orientable compact homogeneous manifolds. We will show that a global pseudo-differential calculus can be associated t
Externí odkaz:
http://arxiv.org/abs/2403.08990
In this work we consider the semigroup $e^{-t\mathcal{A}_{k,\,\ell}^{\gamma}}$ for $\gamma>0$ associated to an anharmonic oscillator of the form $ \mathcal{A}_{k,\,\ell}=(-\Delta)^{\ell}+|x|^{2k}$ where $k,\ell$ are integers $\geq 1$. By introducing
Externí odkaz:
http://arxiv.org/abs/2401.13750
In this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian $\mathcal{L}$ on the Heisenberg group $\mathbb{H}^n$ with power type nonlinearity $|u|^p$ and initial data taken from Sobolev spac
Externí odkaz:
http://arxiv.org/abs/2401.06565
Let $\Delta$ be the Laplace-Beltrami operator on a non-compact symmetric space of any rank, and denote the bottom of its $L^2$-spectrum as $-|\rho|^{2}$. In this paper, we provide a comprehensive characterization of both the sufficient and necessary
Externí odkaz:
http://arxiv.org/abs/2310.19412
We establish the $L^p$-$L^q$-boundedness of subelliptic pseudo-differential operators on a compact Lie group $G$. Effectively, we deal with the $L^p$-$L^q$-bounds for operators in the sub-Riemmanian setting because the subelliptic classes are associa
Externí odkaz:
http://arxiv.org/abs/2310.16247