Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Kulkarni, Ninad"'
Toxicity text detectors can be vulnerable to adversarial examples - small perturbations to input text that fool the systems into wrong detection. Existing attack algorithms are time-consuming and often produce invalid or ambiguous adversarial example
Externí odkaz:
http://arxiv.org/abs/2410.05573
Assessing the factual consistency of automatically generated texts in relation to source context is crucial for developing reliable natural language generation applications. Recent literature proposes AlignScore which uses a unified alignment model t
Externí odkaz:
http://arxiv.org/abs/2404.06579
COVID-19 Knowledge Graph: Accelerating Information Retrieval and Discovery for Scientific Literature
Autor:
Wise, Colby, Ioannidis, Vassilis N., Calvo, Miguel Romero, Song, Xiang, Price, George, Kulkarni, Ninad, Brand, Ryan, Bhatia, Parminder, Karypis, George
The coronavirus disease (COVID-19) has claimed the lives of over 350,000 people and infected more than 6 million people worldwide. Several search engines have surfaced to provide researchers with additional tools to find and retrieve information from
Externí odkaz:
http://arxiv.org/abs/2007.12731
Autor:
Nalavade, Sandeep P., Sagare, Bhakti J., Moghe, Divyesh V., Kulkarni, Ninad V., Bodhe, Sumeet M., Purohit, Pritee, Gurav, Raviraj
Publikováno v:
In Materials Today: Proceedings 2023 90 Part 1:61-66
Most of the metaheuristics can efficiently solve unconstrained problems; however, their performance may degenerate if the constraints are involved. This paper proposes two constraint handling approaches for an emerging metaheuristic of Cohort Intelli
Externí odkaz:
http://arxiv.org/abs/1610.06009
Publikováno v:
International Journal of Parallel, Emergent & Distributed Systems; Dec2018, Vol. 33 Issue 6, p570-588, 19p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shinde, Harshal, Sangle, Akshata, Shendkar, Sumit, Kulkarni, Omkar, Kulkarni, Ninad, Kakandikar, G. M., Nandedkar, V. M.
Publikováno v:
CAD/CAM, Robotics & Factories of the Future; 2016, p455-460, 6p
Publikováno v:
Computer Vision Systems (9783642394010); 2013, p173-182, 10p
Autor:
Agarwal, Priyanka, Imtiaz, Mohsin, Kulkarni, Ninad, Natriello, Tim, Recto, Kat, Surana, Kushan
Publikováno v:
McKinsey Insights; 2/21/2023, pN.PAG-N.PAG, 1p