Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Kudlinska, Monika"'
Autor:
Kudlinska, Monika
We define a new notion of splitting complexity for a group $G$ along a non-trivial integral character $\phi \in H^1(G; \mathbb{Z})$. If $G$ is a one-ended coherent right-angled Artin group, we show that the splitting complexity along an epimorphism $
Externí odkaz:
http://arxiv.org/abs/2411.02516
Autor:
Kudlinska, Monika, Valiunas, Motiejus
A group $G$ is said to be equationally Noetherian if every system of equations in $G$ is equivalent to a finite subsystem. We show that all free-by-cyclic groups are equationally Noetherian. As a corollary, we deduce that the set of exponential growt
Externí odkaz:
http://arxiv.org/abs/2407.08809
We prove that if $G$ fibres algebraically and is part of a $\mathrm{PD}^3$-pair, then $G$ is the fundamental group of a fibred compact aspherical 3-manifold. This yields a new, homological proof of a classical theorem of Stallings: if $G = \pi_1(M^3)
Externí odkaz:
http://arxiv.org/abs/2307.10725
We prove that residually finite mapping tori of polynomially growing automorphisms of hyperbolic groups, groups hyperbolic relative to finitely many virtually polycyclic groups, right-angled Artin groups (when the automorphism is untwisted), and righ
Externí odkaz:
http://arxiv.org/abs/2305.10410
Autor:
Hughes, Sam, Kudlinska, Monika
We prove that amongst the class of free-by-cyclic groups, Gromov hyperbolicity is an invariant of the profinite completion. We show that whenever $G$ is a free-by-cyclic group with first Betti number equal to one, and $H$ is a free-by-cyclic group wh
Externí odkaz:
http://arxiv.org/abs/2303.16834
Autor:
Kudlinska, Monika
We construct the first known infinite family of quasi-isometry classes of subgroups of hyperbolic groups which are not hyperbolic and are of type $\mathrm{FP}(\mathbb{Q})$. We give a simple criterion for producing many non-hyperbolic subgroups of hyp
Externí odkaz:
http://arxiv.org/abs/2303.11218
Autor:
Kudlinska, Monika
We show that a free-by-cyclic group with a polynomially growing monodromy is subgroup separable exactly when it is virtually $F_n \times \mathbb{Z}$. We also prove that random deficiency 1 groups are not subgroup separable with positive asymptotic pr
Externí odkaz:
http://arxiv.org/abs/2211.05752
We show that the homology torsion growth of a free-by-cyclic group with polynomially growing monodromy vanishes in every dimension independently of the choice of Farber chain. It follows that the integral torsion $\rho^\mathbb{Z}$ equals the $\ell^2$
Externí odkaz:
http://arxiv.org/abs/2211.04389
Autor:
Kudlinska, Monika
Let $\Sigma$ be a compact, orientable surface of negative Euler characteristic, and let $h$ be a complete hyperbolic metric on $\Sigma$. A geodesic curve $\gamma$ in $\Sigma$ is filling, if it cuts the surface into topological disks and annuli. We pr
Externí odkaz:
http://arxiv.org/abs/1906.02577
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.