Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Kubota, Hajime"'
Autor:
Kubota, Hajime
The Upsilon invariant is a concordance invariant in knot Floer homology. F\"{o}ldv\'{a}ri reconstructed the Upsilon invariant using grid homology. We prove that the Upsilon invariant in knot Floer homology and one in grid homology are equivalent. Fur
Externí odkaz:
http://arxiv.org/abs/2412.08146
Autor:
Kubota, Hajime
We give a purely combinatorial proof of a K\"{u}nneth formula for the minus version of knot Floer homology of connected sums by constructing a quasi-isomorphism of grid chain complexes. The quasi-isomorphism naturally deduces that the Legendrian and
Externí odkaz:
http://arxiv.org/abs/2312.02610
Autor:
Kubota, Hajime
In this paper, we research the grid homology for spatial graphs with cut edges. We show that the grid homology for spatial graph $f$ is trivial if $f$ has sinks, sources, or cut edges. As an application, we give purely combinatorial proofs of some fo
Externí odkaz:
http://arxiv.org/abs/2308.03324
Autor:
Kubota, Hajime
Grid homology for MOY graphs is immediately defined from grid homology for transverse spatial graphs developed by Harvey and O'Donnol in 2017. We studied some properties of grid homology for MOY graphs such as the oriented skein relation, the effect
Externí odkaz:
http://arxiv.org/abs/2301.10981
Autor:
Kubota, Hajime
Publikováno v:
Journal of Knot Theory and Its Ramifications, Vol. 32, No. 13, 2350088 (2023)
The $\Upsilon$ invariant is a concordance invariant defined by using knot Floer homology. F\"{o}ldv\'{a}ri gives a combinatorial restructure of it using grid homology. We extend the combinatorial $\Upsilon$ invariant for balanced spatial graph using
Externí odkaz:
http://arxiv.org/abs/2206.15048
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kubota, Hajime
Publikováno v:
Journal of Knot Theory & Its Ramifications; Nov2023, Vol. 32 Issue 13, p1-30, 30p
Autor:
Kubota, Hajime
Publikováno v:
Discussion Paper, Series A. 343:1-16
This paper extends the results on trade and welfare obtained in Ohyama(1972) in the case of a traditional world economy with a finite number of goods to the one of a world economy over a discrete-time infinite horizon with l1 , the space of all bound
Autor:
Kubota, Hajime
Publikováno v:
Discussion Paper, Series A. 330:1-29
This paper shows the existence of gains from trade in a dynamic world free trade economy over a discrete-time infinite horizon with using Grandmont-McFadden's(1972) domestic income transfer policy which makes each consumer benefit from world free tra
Autor:
Tsubota, Toshiaki, Tajima, Rie, Ode, Kunitomo, Kubota, Hajime, Fukuhara, Naoshi, Kawabata, Takeshi, Maki, Satoko, Maki, Hisaji
Publikováno v:
In Journal of Biological Chemistry 27 October 2006 281(43):32898-32908