Zobrazeno 1 - 10
of 172
pro vyhledávání: '"Kubo, Izumi"'
Let $\mu_{g}$ and $\mu_{p}$ denote the Gaussian and Poisson measures on ${\Bbb R}$, respectively. We show that there exists a unique measure $\widetilde{\mu}_{g}$ on ${\Bbb C}$ such that under the Segal-Bargmann transform $S_{\mu_g}$ the space $L^2({
Externí odkaz:
http://arxiv.org/abs/math/0110011
Publikováno v:
Quantum information II, T.Hida and K. Saito (eds.), World Scientific (2000) pp17--27
A class of growth functions $u$ is introduced to construct Hida distributions and test functions. The Legendre transform $\ell_{u}$ of $u$ is used to define a sequence $\a(n)=(\ell_{u}(n) n!)^{-1}, n\geq 0$, of positive numbers. From this sequence we
Externí odkaz:
http://arxiv.org/abs/math/0104146
Publikováno v:
In: Infinite dimensional harmonic analysis--Transaction of Japanese-German joint symposium1999, H. Heyer et al. (eds.) D.+M. Grabner, Tubingen (2000) pp70--83
The main purpose of this work is to prove Theorem 4.4, so-called, the characterization theorem of Hida measures (generalized measures). As examples of such measures, we shall present the Poisson noise measure and the Grey noise measure in Example 4.5
Externí odkaz:
http://arxiv.org/abs/math/0104138
Publikováno v:
Acta Appl. Math., 63 (2000) 79--87
Let $\{b_{k}(n)\}_{n=0}^{\infty}$ be the Bell numbers of order $k$. It is proved that the sequence $\{b_{k}(n)/n!\}_{n=0}^{\infty}$ is log-concave and the sequence $\{b_{k}(n)\}_{n=0}^{\infty}$ is log-convex, or equivalently, the following inequaliti
Externí odkaz:
http://arxiv.org/abs/math/0104137
Publikováno v:
Mathematical physics and stochastic analysis, S. Albeverio et al. (eds.) World Scientific, 2000, pp17--27
We prove a characterization theorem for the test functions in a CKS-space. Some crucial ideas concerning the growth condition are given.
Comment: Louisiana state university preprint (1999)
Comment: Louisiana state university preprint (1999)
Externí odkaz:
http://arxiv.org/abs/math/0104135
Publikováno v:
Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 4, No. 1 (2001) 59-84
In this paper we will develop a systematic method to answer the questions $(Q1)(Q2)(Q3)(Q4)$ (stated in Section 1) with complete generality. As a result, we can solve the difficulties $(D1)(D2)$ (discussed in Section 1) without uncertainty. For these
Externí odkaz:
http://arxiv.org/abs/math/0104132
Publikováno v:
Hiroshima Math. J. 31 (2001) pp299--330
Let $u$ be a positive continuous function on $[0, \infty)$ satisfying the conditions: (i) $\lim_{r\to\infty} r^{-1/2}\log u(r)=\infty$, (ii) $\inf_{r\geq 0} u(r)=1$, (iii) $\lim_{r\to \infty}\break r^{-1}\log u(r)<\infty$, (iv) the function $\log u(x
Externí odkaz:
http://arxiv.org/abs/math/0104133
Publikováno v:
Proceedings of the American Mathematical Society, 2003 Mar 01. 131(3), 815-823.
Externí odkaz:
https://www.jstor.org/stable/1194484
Publikováno v:
Taiwanese Journal of Mathematics, 2004 Dec 01. 8(4), 593-628.
Externí odkaz:
https://www.jstor.org/stable/43834539
Autor:
Kubo, Izumi, Saka, Ayse
Publikováno v:
Journal of Knowledge Management, 2002, Vol. 6, Issue 3, pp. 262-271.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/13673270210434368