Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Kügelgen, J."'
Autor:
Träuble, F., Kügelgen, J., Kleindessner, M., Francesco Locatello, Schölkopf, B., Gehler, P.
Publikováno v:
Scopus-Elsevier
When machine learning systems meet real world applications, accuracy is only one of several requirements. In this paper, we assay a complementary perspective originating from the increasing availability of pre-trained and regularly improving state-of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7f0c5c40da4ab4eb6810b0bdb396bc2
http://arxiv.org/abs/2107.01057
http://arxiv.org/abs/2107.01057
Autor:
Kügelgen, J., Sharma, Y., Gresele, L., Brendel, W., Schblkopft, B., Besservet, M., Francesco Locatello
Publikováno v:
Scopus-Elsevier
Self-supervised representation learning has shown remarkable success in a number of domains. A common practice is to perform data augmentation via hand-crafted transformations intended to leave the semantics of the data invariant. We seek to understa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce76bd7b18dddc04c5d7eb9daa4071ee
http://arxiv.org/abs/2106.04619
http://arxiv.org/abs/2106.04619
Publikováno v:
Advances in Neural Information Processing Systems 33
Recent work has discussed the limitations of counterfactual explanations to recommend actions for algorithmic recourse, and argued for the need of taking causal relationships between features into consideration. Unfortunately, in practice, the true u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0962a6aa542dd39b88c7a11841a87a8
Publikováno v:
ICLR 2020 Workshop: Tackling Climate Change with Machine Learning
The United Nations' ambitions to combat climate change and prosper human development are manifested in the Paris Agreement and the Sustainable Development Goals (SDGs), respectively. These are inherently inter-linked as progress towards some of these
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91b6272f79d6821cc72a38d2496435cc
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Laumann F; Department of Mathematics, Imperial College London, London SW7 2BX, UK., von Kügelgen J; Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.; Department of Engineering, University of Cambridge, Cambridge CB2 0QQ, UK., Park J; Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany., Schölkopf B; Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany., Barahona M; Department of Mathematics, Imperial College London, London SW7 2BX, UK.
Publikováno v:
Entropy (Basel, Switzerland) [Entropy (Basel)] 2023 Nov 28; Vol. 25 (12). Date of Electronic Publication: 2023 Nov 28.
Autor:
Kekić A; Empirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany., Dehning J; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany., Gresele L; Empirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany., von Kügelgen J; Empirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.; Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK., Priesemann V; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.; Department of Physics, Georg August University, 37077 Göttingen, Germany., Schölkopf B; Empirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.
Publikováno v:
Patterns (New York, N.Y.) [Patterns (N Y)] 2023 Jun 09; Vol. 4 (6), pp. 100739. Date of Electronic Publication: 2023 May 03.
Autor:
Laumann F; Department of Mathematics, Imperial College London, London, UK. Electronic address: fjl1218@ic.ac.uk., von Kügelgen J; Empirical Inference Department, Max Planck Institute for Intelligent Systems, Tübingen, Germany; Department of Engineering, University of Cambridge, Cambridge, UK., Kanashiro Uehara TH; Chatham House, London, UK; Ethics, Transparency, Integrity and Compliance Studies, Fundação Getulio Vargas, São Paulo, Brazil., Barahona M; Department of Mathematics, Imperial College London, London, UK.
Publikováno v:
The Lancet. Planetary health [Lancet Planet Health] 2022 May; Vol. 6 (5), pp. e422-e430.
Autor:
Bertaux F; Department of Mathematics, Imperial College London, London, United Kingdom.; MRC London Institute of Medical Sciences (LMS), London, United Kingdom.; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom.; Institut Pasteur, USR 3756 IP CNRS, Paris, France., von Kügelgen J; Department of Mathematics, Imperial College London, London, United Kingdom., Marguerat S; MRC London Institute of Medical Sciences (LMS), London, United Kingdom.; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom., Shahrezaei V; Department of Mathematics, Imperial College London, London, United Kingdom.
Publikováno v:
PLoS computational biology [PLoS Comput Biol] 2020 Sep 28; Vol. 16 (9), pp. e1008245. Date of Electronic Publication: 2020 Sep 28 (Print Publication: 2020).
Autor:
Hiller RM; Department of Mathematics, University of British Columbia, Vancouver, Canada., von Kügelgen J; Imperial College London, London, England., Bao H; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada., Duong Van Hoa F; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada., Cytrynbaum EN; Department of Mathematics, University of British Columbia, Vancouver, Canada. cytryn@math.ubc.ca.
Publikováno v:
Bulletin of mathematical biology [Bull Math Biol] 2020 Jul 11; Vol. 82 (7), pp. 92. Date of Electronic Publication: 2020 Jul 11.