Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Ksir, Amy"'
In this paper we consider the Suzuki curve $y^q + y = x^{q_0}(x^q + x)$ over the field with $q = 2^{2m+1}$ elements. The automorphism group of this curve is known to be the Suzuki group $Sz(q)$ with $q^2(q-1)(q^2+1)$ elements. We construct AG codes o
Externí odkaz:
http://arxiv.org/abs/1411.6215
Let $X$ be an abstract tropical curve and let $G$ be a finite subgroup of the automorphism group of $X$. Let $D$ be a divisor on $X$ whose equivalence class is $G$-invariant. We address the following question: is there always a divisor $D'$ in the eq
Externí odkaz:
http://arxiv.org/abs/1006.4869
We look at AG codes associated to the projective line, re-examining the problem of determining their automorphism groups (originally investigated by Duer in 1987 using combinatorial techniques) using recent methods from algebraic geometry. We (re)cla
Externí odkaz:
http://arxiv.org/abs/0801.4007
Let q>1 denote an integer relatively prime to 2,3,7 and for which G=PSL(2,q) is a Hurwitz group for a smooth projective curve X defined over C. We compute the G-module structure of the Riemann-Roch space L(D), where D is an invariant divisor on X of
Externí odkaz:
http://arxiv.org/abs/math/0611547
Autor:
Joyner, David, Ksir, Amy
We compute the PSL(2,N)-module structure of the Riemann-Roch space L(D), where D is an invariant non-special divisor on the modular curve X(N), with N > 5 prime. This depends on a computation of the ramification module, which we give explicitly. Thes
Externí odkaz:
http://arxiv.org/abs/math/0502586
Autor:
Joyner, David, Ksir, Amy
We show that in many cases, the automorphism group of a curve and the permutation automorphism group of a corresponding AG code are the same. This generalizes a result of Wesemeyer beyond the case of planar curves.
Comment: added a reference, fi
Comment: added a reference, fi
Externí odkaz:
http://arxiv.org/abs/math/0412459
Autor:
Joyner, David, Ksir, Amy
If G is a finite subgroup of the automorphism group of a projective curve X and D is a divisor on X stabilized by G, then under the assumption that D is nonspecial, we compute a simplified formula for the trace of the natural representation of G on R
Externí odkaz:
http://arxiv.org/abs/math/0312383
Autor:
Ksir, Amy E., Naculich, Stephen G.
Publikováno v:
Contemp.Math. 324 (2003) 155-164
We study the Seiberg-Witten curves for N=2 SUSY gauge theories arising from type IIA string configurations with two orientifold sixplanes. Such theories lift to elliptic models in M-theory. We express the M-theory background for these models as a non
Externí odkaz:
http://arxiv.org/abs/hep-th/0203270
Autor:
Ksir, Amy E.
Publikováno v:
Int. J. Math. Math. Sci. 26 (2001) no. 2, 107-116
Given a tame Galois branched cover of curves pi: X -> Y with any finite Galois group G whose representations are rational, we compute the dimension of the (generalized) Prym variety corresponding to any irreducible representation \rho of G. This form
Externí odkaz:
http://arxiv.org/abs/math/0007164
Publikováno v:
The American Mathematical Monthly, 2008 Oct 01. 115(8), 701-728.
Externí odkaz:
https://www.jstor.org/stable/27642583