Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kseniya Garaschuk"'
Autor:
Kseniya Garaschuk, Andy Liu
Publikováno v:
Problem Books in Mathematics ISBN: 9783030529451
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a2911f1a881d90f5b568247cff2faad
https://doi.org/10.1007/978-3-030-52946-8_4
https://doi.org/10.1007/978-3-030-52946-8_4
Autor:
Andy Liu, Kseniya Garaschuk
Publikováno v:
Problem Books in Mathematics ISBN: 9783030529451
1. (1988-3) Is it possible to arrange the positive integers from 1 to 100 inclusive in a row so that the difference between any two adjacent numbers is at least 50?
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b14d330d3b692f09674dfa66fff53f2c
https://doi.org/10.1007/978-3-030-52946-8_2
https://doi.org/10.1007/978-3-030-52946-8_2
Autor:
Andy Liu, Kseniya Garaschuk
Publikováno v:
Problem Books in Mathematics ISBN: 9783030529451
1. Pack fifteen 2 × 3 chocolate pieces into a 7 × 13 box, leaving a 1 × 1 hole. 2. In 1979, Natasha’s age was equal to the sum of the digits of the year when she was born. What year was that?
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ab6f213a3ff81be3743b0824e5e484bf
https://doi.org/10.1007/978-3-030-52946-8_1
https://doi.org/10.1007/978-3-030-52946-8_1
Autor:
Andy Liu, Kseniya Garaschuk
Publikováno v:
Problem Books in Mathematics ISBN: 9783030529451
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::346670f191a58fdd24059e6e98ede0db
https://doi.org/10.1007/978-3-030-52946-8_3
https://doi.org/10.1007/978-3-030-52946-8_3
Autor:
Kseniya Garaschuk, Andy Liu
This unique book presents mathematical competition problems primarily aimed at upper elementary school students, but are challenging for students at any age. These problems are drawn from the complete papers of the legendary Leningrad Mathematical Ol
Autor:
Kseniya Garaschuk, Peter J. Dukes
Publikováno v:
Discrete Mathematics. 338:835-838
There are various results connecting ranks of incidence matrices of graphs and hypergraphs with their combinatorial structure. Here, we consider the generalized incidence matrix N 2 (defined by inclusion of pairs in edges) for one natural class of hy
Autor:
Kseniya Garaschuk, Petr Lisoněk
Publikováno v:
Finite Fields and Their Applications. 14:1083-1090
Let K(a) denote the Kloosterman sum on F"3"^"m. It is easy to see that K(a)=2(mod3) for all a@?F"3"^"m. We completely characterize those a@?F"3"^"m for which K(a)=1(mod2), K(a)=0(mod4) and K(a)=2(mod4). The simplicity of the characterization allows u
Autor:
Kseniya Garaschuk, Petr Lisonĕk
Publikováno v:
Designs, Codes and Cryptography. 49:347-357
By counting the coset leaders for cosets of weight 3 of the Melas code we give a new proof for the characterization of Kloosterman sums divisible by 3 for $${\mathbb{F}_{2^m}}$$ where m is odd. New results due to Charpin, Helleseth and Zinoviev then