Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Krzysztof Stempak"'
Autor:
Krzysztof Stempak, Xiangxing Tao
Publikováno v:
Journal of Function Spaces, Vol 2014 (2014)
We define and investigate generalized local Morrey spaces and generalized local Campanato spaces, within a context of a general quasimetric measure space. The locality is manifested here by a restriction to a subfamily of involved balls. The structur
Externí odkaz:
https://doaj.org/article/6c99b7c27a15444796c261069177a6eb
Autor:
Adam Nowak, Krzysztof Stempak
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 016 (2009)
In this paper we continue the study of spectral properties of the Dunkl harmonic oscillator in the context of a finite reflection group on Rd isomorphic to Z_2^d. We prove that imaginary powers of this operator are bounded on L^p, 1 < p < ∞, and fr
Externí odkaz:
https://doaj.org/article/2a494b12464f446eb64a85c7e1bf2694
Autor:
Krzysztof Stempak
Publikováno v:
Journal of Differential Equations. 329:348-370
Autor:
Krzysztof Stempak
Publikováno v:
Proceedings of the American Mathematical Society. 150:4619-4627
Given a root system R R and the corresponding finite reflection group W W let Hom ( W , Z ^ 2 ) \operatorname {Hom}(W,\,\widehat {\mathbb Z}_2) be the group of homomorphisms from W W into Z ^ 2 \widehat {\mathbb Z}_2 , where Z ^ 2 = { 1 , − 1 }
Autor:
Krzysztof Stempak
Publikováno v:
Mediterranean Journal of Mathematics. 20
We investigate some spectral properties of differential–difference operators, which are symmetrizations of differential operators of the form $$(\mathfrak {d}^\dagger \mathfrak {d})^k$$ ( d † d ) k and $$(\mathfrak {d}\mathfrak {d}^\dagger )^k$$
Autor:
Krzysztof Stempak
Publikováno v:
Complex Analysis and Operator Theory. 17
We investigate some spectral properties of a second order differential-difference operator $$J_{\alpha ,\beta }$$ J α , β on $$L^2((-\pi ,\pi ),d\mu _{\alpha , \beta })$$ L 2 ( ( - π , π ) , d μ α , β ) , $$\alpha ,\beta \in \mathbb {R}$$ α ,
Autor:
Jacek Małecki, Krzysztof Stempak
Publikováno v:
Studia Mathematica. 251:171-193
For an open subset $\Omega$ of $\mathbb R^d$, symmetric with respect to a hyperplane and with positive part $\Omega_+$, we consider the Neumann/Dirichlet Laplacians $-\Delta_{N/D,\Omega}$ and $-\Delta_{N/D,\Omega_+}$. Given a Borel function $\Phi$ on
We investigate mapping properties of non-centered Hardy-Littlewood maximal operators related to the exponential measure $dμ(x) = \exp(-|x_1|-\ldots-|x_d|)dx$ in $\mathbb{R}^d$. The mean values are taken over Euclidean balls or cubes ($\ell^{\infty}$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a07184857d732810e47511256292c899
Autor:
Krzysztof Stempak
Publikováno v:
Journal of Approximation Theory. 240:114-125
We characterize smooth functions on R + d that admit η -symmetric smooth extensions onto R d . Also, we characterize smooth functions on R + d that are restrictions of η -symmetric Schwartz class functions on R d . Here η ∈ Z 2 d = { 0 , 1 } d a
Autor:
Krzysztof Stempak
Publikováno v:
Communications on Pure & Applied Analysis.
We investigate spectral properties of ordinary differential operators related to expressions of the form \begin{document}$ D^{\epsilon}+a $\end{document} . Here \begin{document}$ a\in \mathbb{R} $\end{document} and \begin{document}$ D^{\epsilon} $\en