Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Kritsada Sangkhanan"'
Autor:
Kritsada Sangkhanan
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 1366-1377 (2021)
Let T ( X ) T\left(X) be the full transformation semigroup on a set X X . For an equivalence E E on X X , let T E ∗ ( X ) = { α ∈ T ( X ) : ∀ x , y ∈ X , ( x , y ) ∈ E ⇔ ( x α , y α ) ∈ E } . {T}_{{E}^{\ast }}\left(X)=\left\{\alpha \
Autor:
Kritsada Sangkhanan, Jintana Sanwong
Publikováno v:
Semigroup Forum. 100:568-584
Let Y be a subset of X and T(X, Y) the set of all functions from X into Y. Then, under the operation of composition, T(X, Y) is a subsemigroup of the full transformation semigroup T(X). Let E be an equivalence on X. Define a subsemigroup $$T_E(X,Y)$$
Autor:
Kritsada Sangkhanan, Jintana Sanwong
Publikováno v:
Semigroup Forum. 98:456-471
Let P(V) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V, define the following subsemigroups of P(V): $$\begin{aligned} PT(V,W)&=\{\alpha \in P(V)\ |\ V\alpha \subseteq W\},\\ T(V,W)
Publikováno v:
Journal of the Australian Mathematical Society. 103:402-419
Let$V$be a vector space and let$T(V)$denote the semigroup (under composition) of all linear transformations from$V$into$V$. For a fixed subspace$W$of$V$, let$T(V,W)$be the semigroup consisting of all linear transformations from$V$into$W$. In 2008, Su
Publikováno v:
Communications in Algebra. 45:5025-5035
Let ΠL1 denote a direct power of L1, the two-element left zero semigroup with identity adjoined. A semigroup S is called left quasi-ample if for each a∈S there exists a unique idempotent a+∈S such that xa=ya⇔xa+=ya+ for all x, y∈S1 and the l
Publikováno v:
Results in Mathematics. 73
In the literature, the famous Heisenberg group is the group of matrices of the form $$\begin{aligned} \begin{pmatrix} 1 &{}\quad x &{}\quad z\\ 0 &{}\quad 1 &{}\quad y\\ 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}, \end{aligned}$$ where x, y, and z are rea
Autor:
Kritsada Sangkhanan, Ekkachai Laysirikul, Worachead Sommanee, Jintana Sanwong, Bernd Billhardt
Publikováno v:
Semigroup Forum. 92:228-241
Let $$\Pi L^1$$ denote a direct power of $$L^1$$ , the two-element left zero semigroup with identity adjoined. We prove that the semigroups in the title are embeddable into transformation semigroups which naturally generalize the Vagner one-point com
Publikováno v:
Acta Mathematica Hungarica. 145:26-45
Let L 1 be the two element left zero semigroup with identity adjoined. We show that the semigroups in the title are just the subbands of certain $${\mathcal{R}}$$ -unipotent transformation semigroups, introduced by Umar [10], which arise by augmentin
Autor:
Kritsada Sangkhanan
Publikováno v:
International Journal of Pure and Apllied Mathematics. 108
Autor:
Kritsada Sangkhanan, Jintana Sanwong
Publikováno v:
Bulletin of the Australian Mathematical Society. 86:100-118
Let X be any set and P(X) the set of all partial transformations defined on X, that is, all functions α:A→B where A,B are subsets of X. Then P(X) is a semigroup under composition. Let Y be a subset of X. Recently, Fernandes and Sanwong defined PT(